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Fixed effects in linear and nonlinear
panel models



Linear panel models

The linear panel model with fixed effects is one of the core tools of applied economists

Figure 1: Currie et al., AEA P+P 2020
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The linear panel outcome equation:

𝑌𝑖𝑡 = 𝛼𝑖 + 𝑋′
𝑖𝑡𝛽 + 𝑈𝑖𝑡, 𝑡 = 1, ⋯ , 𝑇

• fixed effects (FE) 𝛼𝑖:
• control for unobserved heterogeneity
• no restriction on joint distribution (𝛼𝑖, 𝑋𝑖1, ⋯ , 𝑋𝑖𝑇 )

• OLS of 𝑌𝑖𝑡 on 𝑋𝑖𝑡 inconsistent for 𝛽

In the linear panel model (+ strict exogeneity):

• OLS of 𝑌𝑖𝑡 − 𝑌𝑖 on 𝑋𝑖𝑡 − 𝑋𝑖 is consistent for 𝛽
• 𝛽 is regression coefficient and partial effect
• can estimate (distribution of) 𝛼𝑖 = 𝑌𝑖𝑡 − 𝑋′

𝑖𝑡𝛽 − 𝑈𝑖𝑡
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Nonlinear panel models

Textbook binary choice panel with fixed effects:

𝑌𝑖𝑡 = 1 {𝛼𝑖 + 𝑋′
𝑖𝑡𝛽 + 𝑈𝑖𝑡 ≥ 0} , 𝑡 = 1, ⋯ , 𝑇

and where 𝑈𝑖|𝑋𝑖 ∼ 𝐹 .

If 𝑇 is fixed, then

• (𝛽, 𝑈) does not pin down 𝛼𝑖
• example: if 𝑋′

𝑖𝑡𝛽 + 𝑈𝑖𝑡 = 0 then any 𝛼𝑖 ≥ 0 is compatible with 𝑌𝑖𝑡 = 1
• (𝛽, 𝐹) does not pin down distribution of FEs
• distribution of FEs is partially identified

⇒ Partial identification is widespread in nonlinear panels
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Consequence 1: partial identification of 𝛽

Figure 2: Identified sets in binary choice models,
Botosaru, Loh, Muris (2025+)

• partial ID of FE spills over to 𝛽
• with exceptions (logit)
• identified sets tend to be small

• figure: worst case,
𝑋, 𝑌 ∈ {0, 1}, 𝑇 = 2

• today’s paper: characterize
identified set for 𝛽:

• in a large class of models
• with point or partial ID
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Consequence 2: partial identification of partial effects

• in applications, focus on counterfactual choice probabilities

𝐸 [1{𝛼𝑖 + 𝑥∗𝛽 + 𝑈𝑖𝑡 ≥ 0}|𝑋𝑖 = 𝑥]

and differences/derivatives (partial effects)
• partial effects depend on FE distribution
• even if 𝛽 is point identified, partial effects may not be
• estimation and inference are very challenging
• traditional advice: use random effects or linear models if you want partial effects
• today’s paper:

• ID common parameters and PE …
• … in a general class of models.
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Does it matter?

1. yes: many models are nonlinear
• textbook models: binary and (un)ordered choice
• structural models

2. can’t we just do OLS?
• for textbook cross-sectional models, OLS approximates average partial effects
• for panels, just do TWFE?
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• 𝑌𝑡 = 1{𝛼 + 𝐷𝑡 × 1 + 𝜆𝑡 + 𝑈𝑡 ≥ 0}
• effect of 𝐷 on 𝑌 is positive
• simple DiD (𝐷1 = 0, 𝐷2 = coin flip)
• standard logistic errors (𝑈1, 𝑈2)
• fixed effects: 𝛼 = −0.5 + 𝑐1𝐷2
• time effects: 𝜆1 = 0, 𝜆2 = 1
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Recap

• linear panels with fixed effects are central to applied economics
• would like to use fixed effects in nonlinear panel models, too, but:

• in most models, 𝛽 not point identified
• even if 𝛽 available, cannot get partial effects

• OLS fails due to combination of FE, time effects, and nonlinearity
• partial identification seems unavoidable
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This motivates our adversarial approach to identification.

Overview:

1. Introduction
2. Model
3. Main result
4. Convexity and semiparametric models
5. Computation via linear programming
6. Parametric models
7. Results for nonlinear panels
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Introduction



What? New framework for partial identification + inference

Why?
• Applicable to a large class of econometric models
• Sharp identification of structural and counterfactual parameters
• Computational efficiency via linear programming
• Inference via sample analogs (paper)
• Break new ground in nonlinear panels

How?
• Construct a new discrepancy function with maximin formulation
• Leverage:

• convexity of the set of model probabilities
• a linearity property of many econometric models 12



Semiparametric binary choice model

• example: semiparametric binary choice (SPBC) model (Manski, 1975, 1985)
• cross-sectional binary choice model with

𝑌 = 1{𝑋′𝜃 + 𝑈 ≥ 0}

and a median-zero assumption

med(𝑈|𝑋) = 0.

• if all regressors are discrete:
• 𝛽 partially identified (even with a scale normalization)
• partial effects are partially identified
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• SPBC model has three ingredients:
• unobserved error term 𝑈
• observed regressors 𝑋
• observed outcome 𝑌 ∈ {0, 1}

• inputs 𝑊 = (𝑋, 𝑈) have probability measure 𝛾
• we know: its marginal distribution with respect to 𝑋
• we know: 𝑃(𝑈 ≤ 0|𝑋 = 𝑥) = 0.5 for each 𝑥

• outputs 𝑍 = (𝑋, 𝑌 ) have probability measure 𝜇𝑍
• observed one: 𝜇∗

𝑍

• the focus on 𝛾 and 𝜇 is key to our analysis
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• SPBC model has three properties:
1. model is a map (𝜃, 𝛾) ↦ 𝜇𝑍,(𝜃,𝛾)
2. at each 𝜃, map from 𝛾 to 𝜇 is linear
3. set of all 𝛾 compatible with “what we know” is convex

• set of all median-zero 𝛾 with known X- marginals is convex

• paper: properties 1-3 hold for many econometric models
• derive results from these basic properties
• we use convex analysis, functional analysis, and convex functional analysis
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Model



Setup and Notation

• 𝑍: observable Borel measurable random variable, support 𝒵
• 𝜇∗

𝑍: true probability measure of 𝑍
• 𝜇𝑍,(𝜃,𝛾): model probability for each 𝜃 ∈ Θ and 𝛾 ∈ Γ𝜃

• Θ: parameter space for parameter of interest 𝜃
• Γ𝜃: parameter space for auxiliary parameters 𝛾

In many models: 𝛾 is distribution of unobserved heterogeneity.
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Model Probabilities

Set of model probabilities

ℳ𝜃 ≡ {𝜇𝑍,(𝜃,𝛾) ∶ 𝛾 ∈ Γ𝜃}

for a fixed 𝜃.
ℳ𝜃

ℳ𝜃′

Figure 3: Each point corresponds to a model
probability for a given (𝜃, 𝛾).
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Identified Set

Identified set for 𝜃 is:

ΘI ≡ {𝜃 ∈ Θ ∶ 𝜇∗
𝑍 ∈ ℳ𝜃}

where ℳ𝜃 is closure of ℳ𝜃.
ℳ𝜃

ℳ𝜃′

ℳ𝜃″

𝜇∗
𝑍

Figure 4: {𝜃, 𝜃′} ⊂ Θ𝐼 , 𝜃″ ∉ Θ𝐼 .
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Identified set for 𝜃 is:
ΘI ≡ {𝜃 ∈ Θ ∶ 𝜇∗

𝑍 ∈ ℳ𝜃}.

Notes:

• Problem: this definition of ΘI is not tractable.
• closure of ℳ𝜃

ℳ𝜃 ≡ {𝑚 ∈ 𝒫(𝒵) ∶ ∀𝜀 > 0, ∃𝛾 ∈ Γ𝜃 such that 𝑑TV(𝑚, 𝜇𝑍,(𝜃,𝛾)) < 𝜀}

includes limit points that matter for fixed effects models.
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Main result



Discrepancy function

• goal: tractability of the identification problem

• from the definitions of ℳ𝜃 and Θ𝐼 , we construct a discrepancy function

𝑇 (𝜃) ≡ sup
𝜙∈Φ𝑏(𝒵)

inf
𝜇∈ℳ𝜃

(𝔼𝜇∗
𝑍

[𝜙] − 𝔼𝜇[𝜙])

where Φ𝑏(𝒵) is the set of bounded Borel measurable functions from 𝒵 to [0, 1]

• 𝔼𝜇∗
𝑍

[𝜙]: what feature 𝜙 looks like in data
• 𝔼𝜇[𝜙]: what 𝜙 looks like according to model, under (𝜃, 𝛾)

• intuition: view as an adversarial game

• critic (sup) chooses feature 𝜙 to maximize discrepancy
• defender (inf) chooses measure 𝜇 (“chooses 𝛾”) to minimize discrepancy
• 𝑇 (𝜃) > 0: critic finds a feature where model fails to replicate data at 𝜃
• 𝑇 (𝜃) = 0: defender can always match all observed features at 𝜃
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Discrepancy function
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is central to the paper.

• for identification: main result
• for computation: 𝑇 (𝜃) can be evaluated using LP
• for inference: results are based on 𝑇𝑛(𝜃) (paper)

Main results:

• define ΘMI ≡ {𝜃 ∈ Θ ∶ 𝑇 (𝜃) = 0}
• under mild conditions, ΘMI = ΘI
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Main result

Assumption (1)

𝒵 is a Polish space.

Assumption (2)

For all 𝜃 ∈ Θ, there exists some 𝜎-finite positive measure 𝜆𝜃 ∈ 𝔅(𝒵) with respect to
which every 𝜇 ∈ ℳ𝜃 is continuous.

Theorem (1)
Let Assumptions 1 and 2 hold.

For any 𝜇∗
𝑍 ∈ 𝒫(𝒵), ΘI ⊆ ΘMI.

Additionally, let ℳ𝜃 be convex for all 𝜃. Then ΘI = ΘMI.
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Discussion: convexity

• convexity of ℳ𝜃 is important (else outer set)
• main result says:

𝑇 (𝜃) = 0 ⇔ 𝜇∗
𝑍 ∈ co(ℳ𝜃)

with

𝑇 (𝜃) = sup
𝜙∈Φ𝑏(𝒵)

inf
𝜇∈ℳ𝜃

(𝔼𝜇∗
𝑍

[𝜙] − 𝔼𝜇[𝜙])

• Same as checking, for each 𝜙,

𝔼𝜇∗
𝑍

[𝜙] ≤ inf
𝜇∈ℳ𝜃

𝔼𝜇[𝜙]

ℳ𝜃 𝜇∗
𝑍

𝜙

Figure 5: 𝜃 ∉ Θ𝐼 , with separating
hyperplane
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Convexity in semiparametric models



Models with unobserved heterogeneity

• we consider a class of models where:
• convexity is often satisfied and easy to verify
• extremal point characterization for computational tractability

• consider model where 𝛾 is distribution of unobserved heterogeneity:
• input variables 𝑊 ∈ 𝒲, with probability measure 𝛾 ∈ Γ𝜃(𝒲)
• observed variables 𝑍 ∈ 𝒵
• map 𝜓𝜃 ∶ 𝒲 ↦ 𝒵 known up to 𝜃
• pushforward measure (𝜓𝜃)∗ ∶ Γ𝜃(𝒲) → 𝒫(𝒵)
• ℳ𝜃 = (𝜓𝜃)∗Γ𝜃(𝒲).
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• nests semiparametric regression models with 𝑌 = ℎ(𝑋, 𝑈; 𝜃):
• 𝑌 ∈ 𝒴: outcome variables
• 𝑋 ∈ 𝒳: observed regressors, instruments, …
• 𝑈 ∈ 𝒰: unobserved variables (error terms, fixed effects, …)
• ℎ ∶ 𝒳 × 𝒰 × Θ → 𝒴: structural function
• with (exogeneity and other) restrictions on the distribution of (𝑈, 𝑋).

• mapping the notation:
• inputs 𝑊 = (𝑋, 𝑈) with probability measure 𝛾
• observed 𝑍 = (𝑋, 𝑌 )
• 𝜓𝜃(𝑥, 𝑢) = (𝑥, ℎ(𝑥, 𝑢; 𝜃))
• restrictions incorporated in Γ𝜃
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Corollary 1: Convexity and sharp identification

Assumption (3)
For any 𝜃, there exists a map 𝜓𝜃 ∶ 𝒲 ↦ 𝒵 such that for any 𝛾 ∈ Γ𝜃, the model
probability is given by:

𝜇𝑍,(𝜃,𝛾)(𝑆) = (𝜓𝜃)∗𝛾(𝑆), for any Borel 𝑆 ⊆ 𝒵.

Corollary (1)
Let Assumptions 1-3 hold, and assume that Γ𝜃(𝒲) is convex. Then, ℳ𝜃 is convex
and ΘI = ΘMI.
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Many econometric models have convex Γ𝜃(𝒲):

1. unrestricted Γ𝜃 if 𝑈 are fixed effects
2. linear restrictions on Γ𝜃, e.g.:

• mean or median restrictions on (𝑈, 𝑋)
• 𝜃 includes partial effects or other moments of 𝑈
• see maximum score illustration

3. parametric restrictions: stay tuned

Not covered: independence restrictions involving multiple unobservables.
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Extremal Point Characterization

• Extremal point result: If no restrictions, the inner inf simplifies:

𝑇 (𝜃) = sup
𝜙∈Φ𝑏(𝒵)

inf
𝜇∈ℳ𝜃

(𝔼𝜇∗
𝑍

[𝜙] − 𝔼𝜇[𝜙])

= sup
𝜙∈Φ𝑏(𝒵)

inf
𝑤∈𝒲

(𝔼𝜇∗
𝑍

[𝜙] − 𝜙 ∘ 𝜓𝜃(𝑤))

• similar for linear restrictions
• shows tractability of 𝑇 (𝜃) and Θ𝑀𝐼 :

• search over 𝒲…
• … instead of search over distributions over 𝒲
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Notation:

• unrestricted: Γ𝜃(𝒲) = 𝒫(𝒲) is the set of all probability measures on 𝒲.
• linear restrictions,

𝒫(𝒲)𝑔 ≡ {𝛾 ∈ 𝒫(𝒲) ∶ 𝑔 ∈ 𝐿1(𝛾) and 𝔼𝛾𝑔(𝜃, 𝑤) = 0}

with 𝑔 ∶ Θ × 𝒲 → ℝ𝑑𝑔 a vector of known functions
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Assumption (4)
𝒲 is a Polish space.

Theorem
Under Assumptions 1-4:

if Γ𝜃(𝒲) = 𝒫(𝒲), then 𝜃 ∈ ΘI if and only if

𝔼𝜇∗
𝑍

[𝜙] ≤ sup
𝑤∈𝒲

(𝜙 ∘ 𝜓𝜃)(𝑤)

for all 𝜙 ∈ Φ𝑏(𝒵)
if Γ𝜃(𝒲) = 𝒫(𝒲)𝑔, then 𝜃 ∈ ΘI if and only if

𝐸𝜇∗
𝑍

[𝜙] ≤ sup
{𝑐𝑗,𝑤𝑗}𝑑𝑔+1

𝑗=1

𝑑𝑔+1

∑
𝑗=1

𝑐𝑗 (𝜙 ∘ 𝜓𝜃(𝑤𝑗)) for all 𝜙 ∈ Φ𝑏(𝒵)

subject to
𝑑𝑔+1

∑
𝑗=1

𝑐𝑗𝑔(𝜃, 𝑤𝑗) = 0,
𝑑𝑔+1

∑
𝑗=1

𝑐𝑗 = 1, 𝑐𝑗 ≥ 0. (1) 30



Illustration: SPBC

Consider the binary choice model:

𝑌 = 1{𝛽0 + 𝛽1𝑋 − 𝑈 ≥ 0}

where:

• 𝑌 ∈ {0, 1}: binary outcome
• 𝑋 ∈ {𝑥1, ⋯ , 𝑥𝐾}: discrete explanatory variable
• 𝑈 ∈ ℝ: scalar error term
• 𝛽 = (𝛽0, 𝛽1): unknown regression coefficient

Assumption: ℙ(𝑈 ≤ 0|𝑋 = 𝑥𝑘) = 1
2 , for 𝑘 = 1, ⋯ , 𝐾.
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Fits our framework:

• 𝑍 = (𝑌 , 𝑋), 𝑊 = (𝑋, 𝑈),
• 𝒵 = {0, 1} × {𝑥1, ⋯ , 𝑥𝐾}, 𝒲 = {𝑥1, ⋯ , 𝑥𝐾} × ℝ
• 𝜓𝜃(𝑥, 𝑢) = (1{𝛽0 + 𝛽1𝑥 − 𝑢 ≥ 0}, 𝑥)
• Γ𝜃(𝒲): set of distributions of 𝑊 satisfying the (linear!) median restriction, i.e.

𝐸𝛾𝑈|𝑥
[ ̃𝑔(𝑈, 𝜃) ∣ 𝑋 = 𝑥] = 0,

with
̃𝑔(𝑈, 𝜃) = 1 {𝑈 ≤ 0} − 1

2
• we provide Corollary 2 for working with 𝑈|𝑋, continuous 𝑋
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(a) Design 1 (b) Design 4: 𝒳 = {−3, −2.75, ⋯ , 3}

Figure 6: 𝑇 (𝜃) for maximum score.
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• counterfactual choice probabilities:

𝜏𝑘(𝑥∗) ≡ 𝐸 [1{𝛽0 + 𝑥∗𝛽1 − 𝑈 ≥ 0| 𝑋 = 𝑥𝑘}]

and set
𝜃 = (𝛽, 𝜏1(𝑥∗), ⋯ , 𝜏𝐾(𝑥∗))

• median-zero restrictions and definition of counterfactual probabilities as

𝐸𝛾𝑈|𝑥
[ ̃𝑔(𝑈, 𝜃) ∣ 𝑋 = 𝑥] = 0

with

̃𝑔(𝑈, 𝜃) = [ 1 {𝑈 ≤ 0} − 1
2

1{𝛽0 + 𝑥∗𝛽1 − 𝑈 ≥ 0} − 𝜏𝑘(𝑥∗)] . (2)

• counterfactual choice probabilities are functionals of 𝛾
• recall: Γ𝜃 can depend on 𝜃
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(a) Design 4 (b) Design 4b: U|X discrete uniform

Figure 7: Identified set for the partial effect in the maximum score model
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Computation via LP



Discrepancy function, pmf

• computing the identified set requires evaluating

𝑇 (𝜃) = sup
𝜙∈Φ𝑏(𝒵)

inf
𝜇∈ℳ𝜃

(𝔼𝜇∗
𝑍

[𝜙] − 𝔼𝜇[𝜙])

• involves optimization over measures 𝜇 and functions 𝜙
• reduces to a linear program (LP)
• to make things concrete:

• use pmf instead of probability measures
• demo using the SPBC model
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• discretize support: 𝒵 = {𝑧1, ⋯ , 𝑧𝐿}, 𝒲 = {𝑤1, ⋯ , 𝑤𝑀}

• represent probability measure 𝜇∗
𝑍 by pmf

𝑝∗
𝑍 = (𝑝∗

𝑍,𝑙) = (𝑝∗
𝑍,1, ⋯ , 𝑝∗

𝑍,𝐿)

• first term in 𝑇 (𝜃) = sup𝜙∈Φ𝑏(𝒵) inf𝜇∈ℳ𝜃
(𝔼𝜇∗

𝑍
[𝜙] − 𝔼𝜇[𝜙]) is

𝐸𝜇∗
𝑍

[𝜙] =
𝐿

∑
𝑙=1

𝜙(𝑧𝑙)𝑝∗
𝑍,𝑙 = 𝜙′𝑝∗

𝑍

• represent every model probability 𝜇𝑍,(𝜃,𝛾) by pmf 𝑝(𝜃,𝛾)
𝑍

• second term, for some (𝜃, 𝛾), is

𝐸𝜇𝑍,(𝜃,𝛾)
[𝜙] = 𝜙′𝑝(𝜃,𝛾)

𝑍
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• represent every 𝛾 for 𝑊 by a pmf

𝑝𝑊 = (𝑝𝑊,𝑚) = (𝑝𝑊,1, ⋯ , 𝑝𝑊,𝑀)

• to enforce 𝛾 ∈ Γ𝜃, impose 𝑝𝑊 ≥ 0, 𝐴𝜃𝑝𝑊 = 𝑏𝜃
• there exists a 𝐿 × 𝑀 matrix 𝐶𝜃 such that

𝑝(𝜃,𝛾)
𝑍 = 𝐶𝜃𝑝𝑊

• given 𝜃, there is a linear map from pmf of 𝑊 to a model pmf of 𝑍

• write 𝑇 (𝜃) as

𝑇 (𝜃) = max
𝜙∈ℝ𝐿∶ 0≤𝜙≤1

min
𝑝𝑊 ∈ℝ𝑀 ∶ 𝑝𝑊 ≥0, 𝐴𝜃𝑝𝑊 =𝑏𝜃

𝜙′𝑝∗
𝑍 − 𝜙′𝐶𝜃𝑝𝑊⏟⏟⏟⏟⏟⏟⏟

𝜙′𝐶𝜃𝑝𝑊

38



• represent every 𝛾 for 𝑊 by a pmf

𝑝𝑊 = (𝑝𝑊,𝑚) = (𝑝𝑊,1, ⋯ , 𝑝𝑊,𝑀)

• to enforce 𝛾 ∈ Γ𝜃, impose 𝑝𝑊 ≥ 0, 𝐴𝜃𝑝𝑊 = 𝑏𝜃

• there exists a 𝐿 × 𝑀 matrix 𝐶𝜃 such that

𝑝(𝜃,𝛾)
𝑍 = 𝐶𝜃𝑝𝑊

• given 𝜃, there is a linear map from pmf of 𝑊 to a model pmf of 𝑍

• write 𝑇 (𝜃) as

𝑇 (𝜃) = max
𝜙∈ℝ𝐿∶ 0≤𝜙≤1

min
𝑝𝑊 ∈ℝ𝑀 ∶ 𝑝𝑊 ≥0, 𝐴𝜃𝑝𝑊 =𝑏𝜃

𝜙′𝑝∗
𝑍 − 𝜙′𝐶𝜃𝑝𝑊⏟⏟⏟⏟⏟⏟⏟

𝜙′𝐶𝜃𝑝𝑊

38



• represent every 𝛾 for 𝑊 by a pmf

𝑝𝑊 = (𝑝𝑊,𝑚) = (𝑝𝑊,1, ⋯ , 𝑝𝑊,𝑀)

• to enforce 𝛾 ∈ Γ𝜃, impose 𝑝𝑊 ≥ 0, 𝐴𝜃𝑝𝑊 = 𝑏𝜃
• there exists a 𝐿 × 𝑀 matrix 𝐶𝜃 such that

𝑝(𝜃,𝛾)
𝑍 = 𝐶𝜃𝑝𝑊

• given 𝜃, there is a linear map from pmf of 𝑊 to a model pmf of 𝑍
• write 𝑇 (𝜃) as

𝑇 (𝜃) = max
𝜙∈ℝ𝐿∶ 0≤𝜙≤1

min
𝑝𝑊 ∈ℝ𝑀 ∶ 𝑝𝑊 ≥0, 𝐴𝜃𝑝𝑊 =𝑏𝜃

𝜙′𝑝∗
𝑍 − 𝜙′𝐶𝜃𝑝𝑊⏟⏟⏟⏟⏟⏟⏟

𝜙′𝐶𝜃𝑝𝑊

38



• represent every 𝛾 for 𝑊 by a pmf

𝑝𝑊 = (𝑝𝑊,𝑚) = (𝑝𝑊,1, ⋯ , 𝑝𝑊,𝑀)

• to enforce 𝛾 ∈ Γ𝜃, impose 𝑝𝑊 ≥ 0, 𝐴𝜃𝑝𝑊 = 𝑏𝜃
• there exists a 𝐿 × 𝑀 matrix 𝐶𝜃 such that

𝑝(𝜃,𝛾)
𝑍 = 𝐶𝜃𝑝𝑊

• given 𝜃, there is a linear map from pmf of 𝑊 to a model pmf of 𝑍

• write 𝑇 (𝜃) as

𝑇 (𝜃) = max
𝜙∈ℝ𝐿∶ 0≤𝜙≤1

min
𝑝𝑊 ∈ℝ𝑀 ∶ 𝑝𝑊 ≥0, 𝐴𝜃𝑝𝑊 =𝑏𝜃

𝜙′𝑝∗
𝑍 − 𝜙′𝐶𝜃𝑝𝑊⏟⏟⏟⏟⏟⏟⏟

𝜙′𝐶𝜃𝑝𝑊

38



• represent every 𝛾 for 𝑊 by a pmf

𝑝𝑊 = (𝑝𝑊,𝑚) = (𝑝𝑊,1, ⋯ , 𝑝𝑊,𝑀)

• to enforce 𝛾 ∈ Γ𝜃, impose 𝑝𝑊 ≥ 0, 𝐴𝜃𝑝𝑊 = 𝑏𝜃
• there exists a 𝐿 × 𝑀 matrix 𝐶𝜃 such that

𝑝(𝜃,𝛾)
𝑍 = 𝐶𝜃𝑝𝑊

• given 𝜃, there is a linear map from pmf of 𝑊 to a model pmf of 𝑍
• write 𝑇 (𝜃) as

𝑇 (𝜃) = max
𝜙∈ℝ𝐿∶ 0≤𝜙≤1

min
𝑝𝑊 ∈ℝ𝑀 ∶ 𝑝𝑊 ≥0, 𝐴𝜃𝑝𝑊 =𝑏𝜃

𝜙′𝑝∗
𝑍 − 𝜙′𝐶𝜃𝑝𝑊⏟⏟⏟⏟⏟⏟⏟

𝜙′𝐶𝜃𝑝𝑊

38



Semiparametric binary choice

• SPBC with binary regressor and an error term with 3 points of support,

𝑌 ∈ {0, 1}, 𝑋 ∈ {𝑥1, 𝑥2} ⊂ ℝ, 𝑈 ∈ {−1, 0, 1}
and

𝑌 = 1{𝛽1 + 𝑋𝛽2 − 𝑈 ≥ 0}
• define

𝑝(𝜃,𝛾)
𝑍 =

⎡
⎢⎢⎢
⎣

𝑝(𝜃,𝛾)
𝑍 (𝑥1, 1)

𝑝(𝜃,𝛾)
𝑍 (𝑥1, 0)

𝑝(𝜃,𝛾)
𝑍 (𝑥2, 1)

𝑝(𝜃,𝛾)
𝑍 (𝑥2, 0)

⎤
⎥⎥⎥
⎦

, 𝑝𝑊 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑝𝑊 (𝑥1, −1)
𝑝𝑊 (𝑥1, 0)
𝑝𝑊 (𝑥1, 1)

𝑝𝑊 (𝑥2, −1)
𝑝𝑊 (𝑥2, 0)
𝑝𝑊 (𝑥2, 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

• next slide: 𝑝(𝜃,𝛾)
𝑍 = 𝐶𝜃𝑝𝑊
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⎡
⎢
⎢
⎢
⎣

𝑝(𝜃,𝛾)
𝑍 (𝑥1, 1)

𝑝(𝜃,𝛾)
𝑍 (𝑥1, 0)

𝑝(𝜃,𝛾)
𝑍 (𝑥2, 1)

𝑝(𝜃,𝛾)
𝑍 (𝑥2, 0)

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

1{𝑥′
1𝜃 + 1 ≥ 0} 1{𝑥′

1𝜃 ≥ 0} 1{𝑥′
1𝜃 − 1 ≥ 0} 0 0 0

1{𝑥′
1𝜃 + 1 < 0} 1{𝑥′

1𝜃 < 0} 1{𝑥′
1𝜃 − 1 < 0} 0 0 0

0 0 0 1{𝑥′
2𝜃 + 1 ≥ 0} 1{𝑥′

2𝜃 ≥ 0} 1{𝑥′
2𝜃 − 1 ≥ 0}

0 0 0 1{𝑥′
2𝜃 + 1 < 0} 1{𝑥′

2𝜃 < 0} 1{𝑥′
2𝜃 − 1 < 0}

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑝𝑊 (𝑥1, −1)
𝑝𝑊 (𝑥1, 0)
𝑝𝑊 (𝑥1, 1)

𝑝𝑊 (𝑥2, −1)
𝑝𝑊 (𝑥2, 0)
𝑝𝑊 (𝑥2, 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

where ̃𝑥 = (1, 𝑥).

• 𝑝(𝜃,𝛾)
𝑍 = 𝐶𝜃𝑝𝑊

• 𝐶𝜃 is a known matrix
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• model restrictions are 𝐴𝜃𝑝𝑊 = 𝑏𝜃, with:

𝐴𝜃 = ⎡
⎢
⎣

1 1 1 1 1 1
1 0 −1 0 0 0
0 0 0 1 0 −1

⎤
⎥
⎦

, 𝑏𝜃 = ⎡
⎢
⎣

1
0
0

⎤
⎥
⎦

,

• first constraint: 𝑝𝑊 is a probability vector, ∑𝑀
𝑚=1 𝑝𝑊,𝑚 = 1

• constraints 2 and 3 ensure that the median is zero:
∑𝑢<0 𝑃(𝑋 = 𝑥, 𝑈 = 𝑢) = ∑𝑢>0 𝑃(𝑋 = 𝑥, 𝑈 = 𝑢).
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Duality

Inner minimization problem is LP with coefficients 𝜙′𝐶𝜃 on decision variables 𝑝𝑊 .

min 𝜙′𝐶𝜃𝑝𝑊
subject to 𝐴𝜃𝑝𝑊 = 𝑏𝜃,

𝑝𝑊 ≥ 0,

Its dual is:
max 𝜆′𝑏𝜃
subject to 𝜆′𝐴𝜃 ≤ 𝜙′𝐶𝜃,

with 𝜆 the dual variables for constraints in primal.

Strong duality holds, so can replace inner minimization by its dual.
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Substituting dual into 𝑇 (𝜃) means we now maximize over 𝜙 (as before) and 𝜆 (dual):

𝑇 (𝜃) =
⎧{
⎨{⎩

max𝜆,𝜙 𝜆′𝑏𝜃
subject to 𝐴′

𝜃𝜆 ≤ 𝐶′
𝜃𝜙,

0 ≤ 𝜙 ≤ 1.
(3)

This is a LP: we have achieved tractability for 𝑇 (𝜃) and therefore Θ𝐼 .
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Takeaway:

• to determine if 𝜃 ∈ Θ𝐼 , solve an LP for 𝑇 (𝜃) and check 𝑇 (𝜃) ≤ 0.
• negligible computation time, even for very large (𝐿, 𝑀) (stay tuned)
• writing code for a specific model is trivial. LP solver only needs:

1. supports 𝒵, 𝒲
2. true parameter values (𝜃∗, 𝑝∗

𝑊 ) to compute 𝑝∗
𝑍

3. the matrix 𝐶𝜃
4. restrictions (𝐴𝜃, 𝑏𝜃)
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(a) Design 1 (b) Design 2: 𝒰 = {−5, −4.9, ⋯ , 5}

Figure 8: 𝑇 (𝜃) for maximum score.
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(a) Design 3: 𝒳 = {−3, −2, ⋯ , 3} (b) Design 4: 𝒳 = {−3, −2.75, ⋯ , 3}

Figure 9: 𝑇 (𝜃) for maximum score.
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Computational efficiency:

Design 𝜃2 𝜃3 𝐾𝑢 𝐾𝑥

1 0.0024 0.0016 3 2
2 0.0033 0.0023 101 2
3 0.0083 0.0077 101 7
4 0.0522 0.0536 101 25

Table 1: Time, in seconds, for one evaluation of 𝑇 (𝜃).

Competing methods in partial identification: Design 4 picture would take days.
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Models with parametric restrictions



Key idea: Parametric error distributions

• What if some components of latent variables follow known distributions?
• Consider model with:

𝑌 = ℎ(𝑋, 𝛼, 𝑉 ; 𝛽), (𝑋, 𝛼) ∼ 𝛾𝑋,𝛼, 𝑉 |𝑋, 𝛼 ∼ 𝐹𝑉 |𝑋,𝛼;𝛽

• 𝛾𝑋,𝛼 is unknown (e.g., fixed effects)
• 𝐹𝑉 |𝑋,𝛼;𝛽 is known up to parameter 𝛽

• Main insight: Similar framework applies!
• Set of model probabilities still has convex structure
• Linear structure is maintained, but in a different form
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Linear integral operator

• For parametric error models, the linear mapping changes form:
• Before: pushforward measure (𝜓𝜃)∗
• Now: linear integral operator ℒ𝛽

ℒ𝛽[𝛾𝑋,𝛼](𝑆) ≡ ∫
𝒳×𝒜

∫
𝒴

1𝑆(𝑦, 𝑥)𝑓𝑌 |𝑋,𝛼(𝑦 ∣ 𝑥, 𝑎; 𝛽) d𝜆𝒴(𝑦) d𝛾𝑋,𝛼(𝑥, 𝑎)

• Still a linear map: 𝜇𝑍,(𝛽,𝛾𝑋,𝛼) = ℒ𝛽[𝛾𝑋,𝛼]
• Model probabilities ℳ𝛽 = {ℒ𝛽[𝛾𝑋,𝛼] ∶ 𝛾𝑋,𝛼 ∈ 𝒫(𝒳 × 𝒜)}
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Identification and computation

• Our general theory still applies:
• Θ𝐼 still characterized by zeros of 𝑇 (𝜃)
• ℳ𝛽 is convex (map is linear, domain is convex)
• Extremal point representation available

• Linear programming approach extends naturally:
• Dimensionality of LP depends on supports of 𝑋 and 𝛼
• Not on support of 𝑉 (integrated out parametrically)
• Structure of LP remains the same

• Will see this applied to parametric binary choice panel models
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Binary choice with fixed effects



Panel Models

• Focus on most challenging flavour:
• nonlinear / discrete choice
• fixed effects
• short-𝑇 setting (fixed number of time periods)

• Strict and sequential exogeneity
• Get both structural and counterfactual parameters
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Binary choice, parametric

Textbook binary choice panel with fixed effects:

𝑌𝑖𝑡 = 1 {𝛼𝑖 + 𝑋′
𝑖𝑡𝛽 + 𝑈𝑖𝑡 ≥ 0} , 𝑡 = 1, ⋯ , 𝑇

and 𝑈𝑖|𝑋𝑖 ∼ 𝐹 .

• 𝑇 = 2, 𝑋1 = 0, 𝑋2 = 1
• 𝛼 ∈ {−5, −4.9, ⋯ , 4.8, 4.9, 5.0} with 𝑃(𝛼 = 𝑎) ∝ exp(−𝑎2/2).
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• on my laptop, it takes 0.0036 seconds to compute 𝑇 (𝜃)
• logit: 𝛽0 is point-identified
• probit: Θ𝐼 = [0.968, 1.065]

(a) 𝑇 (𝜃) for the probit model. (b) Θ𝐼 for various error distributions.

Figure 10: Identified sets for the static binary choice model with 𝑋 = (0, 1), 𝛽0 = 1.
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• probit model, 𝑇 ∈ {2, 3}

(a) 𝑇 = 2 (b) 𝑇 = 3

Figure 11: Identified sets for regression coefficient in static binary choice probit.
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• 𝑇 = 4: point-identified if you don’t have a microscope

Figure 12: Identified sets for regression coefficient in static binary choice probit, 𝑇 = 4
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• average treatment effect of moving 𝑥 from 0 to 1, i.e.

ATE(0, 1; 𝛽) = 𝐸[𝐻(𝛼 + 𝛽) − 𝐻(𝛼)].

(a) 𝑇 = 2 (b) 𝑇 = 3

Figure 13: Identified sets for ATE in static binary choice probit.
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Binary choice, strict exogeneity

SPBC with fixed effects:

𝑌𝑡 = 1{𝑋′
𝑡𝛽 + 𝛼 + 𝑉𝑡 ≥ 0}, 𝑡 = 1, 2

• outcomes 𝑌𝑡 ∈ {0, 1} and regressors 𝑋𝑡 ∈ 𝒳𝑡
• fixed effect 𝛼 ∈ ℝ and error terms 𝑉𝑡 ∈ ℝ
• assume strict stationarity

𝑉1|𝛼, 𝑋1, 𝑋2
𝑑= 𝑉2|𝛼, 𝑋1, 𝑋2

• literature
• 𝛽: Manski (1985); Khan et al. (2023); Gao and Wang (2024); Mbakop (2024)
• partial effects:

• Botosaru and Muris (2024)
• parametric: Aguirregabiria and Carro (2021), Davezies et al. (2024); Dobronyi et

al. (2021); Pakel and Weidner (2024); Dano (2024)
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(a) DGP1: Identified set for 𝛽2. (b) DGP1: Identified set for 𝛽2 and ASF.

We are the first to obtain results in panel (b).
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Sequential exogeneity

• predetermined regressors:

𝑉1|𝛼, 𝑋1
𝑑= 𝑉2|𝛼, 𝑋1, 𝑋2

• Γ𝜃(𝒲) not convex because of 𝑉2 ⟂ 𝑋2
• Theorem 3: ℳ𝜃 is convex
• computation via a variant of our LP
• literature:

• parametric: Arellano and Carrasco (2003); Bonhomme et al. (2023); Chamberlain
(2023); Pigini and Bartolucci (2022)

• ???
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Figure 15: DGP2: Identified set for 𝛽2.
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Conclusion



Summary

1. general framework for (partial) identification
2. novel discrepancy function yields tractable, sharp ID
3. works for general class of models, for structural and counterfactual parameters
4. break new ground in nonlinear panels

Paper on arXiv: “An Adversarial Approach to Identification”
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