An Adversarial Approach to Identification and Inference

UT Knoxville, January 2025

Irene Botosaru (McMaster), Isaac Loh (UNC Wilmington), Chris Muris (McMaster)

Fixed effects in linear and nonlinear panel models

The linear panel model with fixed effects is one of the core tools of applied economist.

Linear panel models

The linear panel model with fixed effects is one of the core tools of applied economist.

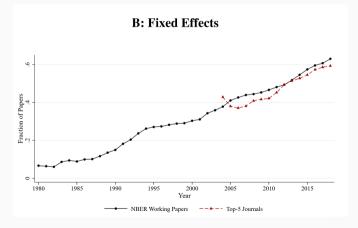


Figure 1: Currie et al., AEA P+P 2020

Outcome equation of linear panel model:

$$Y_{it} = \alpha_i + X_{it}'\beta + U_{it}, \; t = 1, \cdots, T$$

- fixed effects (FE):
 - control for unobserved heterogeneity
 - no restriction on relationship $(\alpha_i, X_{i1}, \cdots, X_{iT})$
- OLS of Y_{it} on X_{it} is inconsistent for β

Outcome equation of linear panel model:

$$Y_{it} = \alpha_i + X_{it}'\beta + U_{it}, \; t=1,\cdots,T$$

- fixed effects (FE):
 - control for unobserved heterogeneity
 - no restriction on relationship $(\alpha_i, X_{i1}, \cdots, X_{iT})$
- OLS of Y_{it} on X_{it} is inconsistent for β

In linear panel model (+ strict exogeneity):

- OLS of $Y_{it}-\overline{Y_i}$ on $X_{it}-\overline{X_i}$ is consistent for β
- β is regression coefficient and partial effect

Outcome equation of linear panel model:

$$Y_{it} = \alpha_i + X_{it}'\beta + U_{it}, \; t=1,\cdots,T$$

- fixed effects (FE):
 - control for unobserved heterogeneity
 - no restriction on relationship $(\alpha_i, X_{i1}, \cdots, X_{iT})$
- OLS of Y_{it} on X_{it} is inconsistent for β

In linear panel model (+ strict exogeneity):

- OLS of $Y_{it}-\overline{Y_i}$ on $X_{it}-\overline{X_i}$ is consistent for β
- β is regression coefficient and partial effect

Note:

- can estimate (distribution of) $\alpha_i = Y_{it} - X_{it}'\beta - U_{it}$

Textbook binary choice panel with fixed effects:

$$Y_{it} = 1 \left\{ \alpha_i + X_{it}' \beta + U_{it} \ge 0 \right\}, \ t = 1, \cdots, T$$

and $U_i | X_i \sim F$.

If T is fixed, then

- (β, U) does not pin down α_i
 - example: if $X_{it}'\beta + U_{it} = 0$ then any $\alpha_i \ge 0$ is compatible with $Y_{it} = 1$
- (β,F) does not pin down distribution of FEs
- distribution of FEs is partially identified

 \Rightarrow Partial identification is widespread in nonlinear panels

Consequence 1: partial identification of β

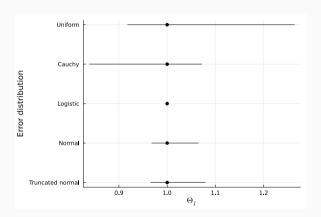


Figure 2: Identified sets in binary choice models, Botosaru, Loh, Muris (2025+)

- partial ID of FE spills over to β
- with exceptions (logit)
- identified sets tend to be small
 - figure: worst case,
 - $X, Y \in \{0, 1\}, T = 2$

Consequence 1: literature

- huge literature on point ID for specific models
 - Chamberlain (REStud 1980; ECMA 2010); Manski (ECMA 1987)
- small literature on point identification for larger classes
 - Bonhomme (ECMA 2012); Botosaru, Muris, Pendakur (JoE 2023)
- partial identification results for specific models
 - Shi et al. (ECMA 2018); Aristodemou (JoE 2020); Khan et al. (QE 2021); Pakes and Porter (QE 2024); Mbakop (JPE RR)
- **today's paper:** characterize identified set for *β*:
 - in a large class of models
 - with point or partial ID

I have contributed to this literature:

- static ordered choice (Muris, REStat 2017)
- interval-censored models (Abrevaya and Muris, JAE 2020)
- general result + collective households (Botosaru, Muris, Pendakur, JoE 2023)
- dynamic ordered choice:
 - Muris, Raposo, Vandoros (REStat 2025+)
 - Honore, Muris, Weidner (QE 2025+)

• in applications, focus on counterfactual choice probabilities

$$E\left[1\{\alpha_i+x^*\beta+U_{it}\geq 0\}|X_i=x\right]$$

and differences/derivatives (partial effects)

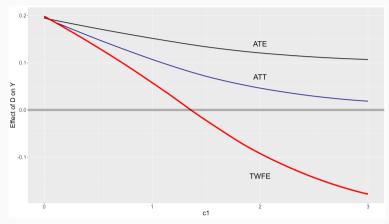
- partial effects depend on FE distribution
- even if β is point identified, partial effects are not
- estimation and inference is very challenging
- traditional advice: use random effects or linear models if you want partial effects

Consequence 2: literature

- Wooldridge's grad textbook (2010): "Unfortunately, we cannot estimate the partial effects on the response probabilities ..."
- recent work makes progress on this issue:
 - Chernozhukov et al. (ECMA 2013); Honore and Tamer (ECMA 2006)
 - Botosaru and Muris (WP 2017; JoE 2023; JoE 2024)
 - logit models
 - Dobronyi et al. (REStud RR); Davezies et al. (REStud RR); Aguirregabiria and Carro (REStat 2025+); Dano (WP, 2025+); Pakel and Weidner (WP 2025+)
 - literature is fragmented, few solutions and they depend on model/parameter
- today's paper:
 - ID common parameters and PE ...
 - ... in a general class of models.

- linear panels with fixed effects are central to applied economics
- would like to use FE in nonlinear models, but:
 - in most models, β not point identified
 - even if β point identified, partial effects are not

- 1. yes: many models are nonlinear
 - textbook models: binary and (un)ordered choice
 - structural models
- 2. can't we just do OLS?
 - for textbook cross-sectional models, OLS approximates average partial effects
 - for panels, just do TWFE?



- Previous slide DGP:
 - binary choice outcomes
 - simple DiD ($D_1 = 0, D_2 = \text{coin flip}$)
 - standard logistic errors $\left(U_1, U_2\right)$
 - fixed effects: $\alpha = -0.5 + c_1 D_2$
 - time effects: $\lambda_1=0,\;\lambda_2=1$,
 - outcome equation:

$$Y_t = 1\{\alpha + D_t \times 1 + \lambda_t + U_t \ge 0\}$$

• effect of D on Y is positive

- linear panels with fixed effects are central to applied economics
- would like to use fixed effects in nonlinear panel models, too, but:
 - in most models, β not point identified
 - even if β available, cannot get partial effects
- OLS fails due to combination of FE, time effects, and nonlinearity
- partial identification seems unavoidable

- linear panels with fixed effects are central to applied economics
- would like to use fixed effects in nonlinear panel models, too, but:
 - in most models, β not point identified
 - even if β available, cannot get partial effects
- OLS fails due to combination of FE, time effects, and nonlinearity
- partial identification seems unavoidable

Can we develop an approach that works under partial identification, and that is easy to implement in applied practice?

This is where **adversarial identification** comes in!

This is where adversarial identification comes in!

Overview for "Adversarial identification"

- 1. Introduction
- 2. Model
- 3. Main result
- 4. Computation via linear programming
- 5. Results for nonlinear panels

Introduction

What? Framework for partial identification + inference

Why?

- Applicable to a wide range of models
- Sharp identification of structural and counterfactual parameters
- Computational efficiency via linear programming
- Inference via sample analogs (paper)
- Break new ground in nonlinear panels

How?

- Construct a discrepancy function with maximin formulation
- Leverage:
 - convexity of the set of model probabilities
 - a linearity property of most econometric models

To establish notation and terminology:

- running example: semiparametric binary choice (SPBC) model
- start from cross-sectional logit/probit model with

 $Y_i = 1\{X_i'\theta + U_i \geq 0\}$

with $U_i \perp X_i$ and U_i is standard logistic/normal

• weaken assumptions on (U, X) to $med(U_i|X_i) = 0$.

To establish notation and terminology:

- running example: semiparametric binary choice (SPBC) model
- start from cross-sectional logit/probit model with

 $Y_i = 1\{X_i'\theta + U_i \geq 0\}$

with $U_i \perp X_i$ and U_i is standard logistic/normal

• weaken assumptions on (U, X) to $med(U_i|X_i) = 0$.

Compare: linear model with $U_i \sim \mathcal{N}(0, \sigma^2)$ relaxed to $E(U_i|X_i) = 0$.

- SPBC model is surprisingly hard to analyze...
- ... which is why we don't see it in the wild
- if all regressors are discrete:
 - β partially identified (even with a scale normalization)
 - partial effects partially identified

One of our innovations: how we set up the econometric model.

One of our innovations: how we set up the econometric model.

- SPBC model has three ingredients:
 - unobserved error term ${\boldsymbol U}$
 - observed regressors \boldsymbol{X}
 - observed outcome $Y \in \{0,1\}$
- inputs W=(X,U) have probability measure γ
 - we know: its marginal distribution with respect to \boldsymbol{X}
 - we know: $P(U_i \leq 0 | X_i = x) = 0.5$ for each x
- outputs Z = (X, Y) have probability measure μ_Z
 - observed one: μ_Z^\ast

One of our innovations: how we set up the econometric model.

- SPBC model has three ingredients:
 - unobserved error term ${\boldsymbol U}$
 - observed regressors \boldsymbol{X}
 - observed outcome $Y \in \{0,1\}$
- inputs W=(X,U) have probability measure γ
 - we know: its marginal distribution with respect to \boldsymbol{X}
 - we know: $P(U_i \leq 0 | X_i = x) = 0.5$ for each x
- outputs Z = (X, Y) have probability measure μ_Z
 - observed one: μ_Z^\ast

Our focus on γ and μ is novel and key to our analysis.

SPBC model has three properties:

- 1. for each parameter β and for each distribution of inputs $\gamma,$ it returns a distribution of outputs $\mu_{Z,(\beta,\gamma)}$
 - in other words: model is a map $(\beta, \gamma) \mapsto \mu_{Z,(\beta,\gamma)}$
- 2. at each $\beta,$ map from γ to μ is linear
- 3. set of all γ compatible with "what we know" is ${\bf convex}$
 - set of all median-zero γ is convex

SPBC model has three properties:

- 1. for each parameter β and for each distribution of inputs $\gamma,$ it returns a distribution of outputs $\mu_{Z,(\beta,\gamma)}$
 - in other words: model is a map $(\beta, \gamma) \mapsto \mu_{Z,(\beta,\gamma)}$
- 2. at each $\beta,$ map from γ to μ is linear
- 3. set of all γ compatible with "what we know" is ${\bf convex}$
 - set of all median-zero γ is convex

- paper: properties 1-3 hold for most econometric models
 - derive results from these basic properties
 - we use convex analysis, functional analysis, and convex functional analysis
- this talk: 1-3 hold for pmf version of SPBC model

Model

- Z: observable Borel measurable random variable, support \mathcal{Z}
- μ_Z^* : true probability measure of Z
- $\mu_{Z,(\theta,\gamma)}$: model probability for each $\theta \in \Theta$ and $\gamma \in \Gamma_{\theta}$
 - $\Theta:$ parameter space for parameter of interest θ
 - $\Gamma_{\theta}:$ parameter space for auxiliary parameters γ

- Z: observable Borel measurable random variable, support \mathcal{Z}
- μ_Z^* : true probability measure of Z
- $\mu_{Z,(\theta,\gamma)}$: model probability for each $\theta \in \Theta$ and $\gamma \in \Gamma_{\theta}$
 - Θ : parameter space for parameter of interest θ
 - Γ_{θ} : parameter space for auxiliary parameters γ

In many models: γ is distribution of unobserved heterogeneity.

Set of model probabilities

$$\mathcal{M}_{\theta} \equiv \{\mu_{Z,(\theta,\gamma)}: \gamma \in \Gamma_{\theta}\}$$

for a fixed θ .

Figure 3: Each point corresponds to a model probability for a given (θ, γ) .

Set of model probabilities

$$\mathcal{M}_{\theta} \equiv \{\mu_{Z,(\theta,\gamma)}: \gamma \in \Gamma_{\theta}\}$$

for a fixed θ .

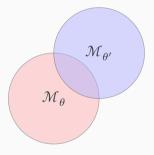


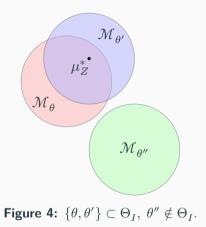
Figure 3: Each point corresponds to a model probability for a given (θ, γ) .

Identified Set

Identified set for θ is:

$$\Theta_{\mathrm{I}} \equiv \{\theta \in \Theta: \mu_Z^* \in \overline{\mathcal{M}}_{\theta}\}$$

where $\overline{\mathcal{M}}_{\theta}$ is the closure of \mathcal{M}_{θ} .



Identified set for θ is:

$$\Theta_{\mathrm{I}} \equiv \{\theta \in \Theta: \mu_Z^* \in \overline{\mathcal{M}}_{\theta}\}$$

where $\overline{\mathcal{M}}_{\theta}$ is the closure of \mathcal{M}_{θ} .

Problem: this definition is not tractable.

Main result

- Goal: tractability of the identification problem

- Goal: tractability of the identification problem
- From definitions of \mathcal{M}_{θ} and Θ_I , we **construct** a discrepancy function

$$T(\theta) \equiv \sup_{\phi \in \Phi_b(\mathcal{Z})} \inf_{\mu \in \mathcal{M}_\theta} \left(\mathbb{E}_{\mu_Z^*}[\phi] - \mathbb{E}_{\mu}[\phi] \right)$$

- Goal: tractability of the identification problem
- From definitions of \mathcal{M}_{θ} and $\Theta_{I},$ we **construct** a discrepancy function

$$T(\theta) \equiv \sup_{\phi \in \Phi_b(\mathcal{Z})} \inf_{\mu \in \mathcal{M}_\theta} \left(\mathbb{E}_{\mu_Z^*}[\phi] - \mathbb{E}_{\mu}[\phi] \right)$$

where $\Phi_b(\mathcal{Z})$ is the set of bounded Borel measurable functions from \mathcal{Z} to [0,1]

- $\mathbb{E}_{\mu_Z^*}[\phi]:$ what feature ϕ looks like in data

- Goal: tractability of the identification problem
- From definitions of \mathcal{M}_{θ} and $\Theta_{I},$ we **construct** a discrepancy function

$$T(\theta) \equiv \sup_{\phi \in \Phi_b(\mathcal{Z})} \inf_{\mu \in \mathcal{M}_\theta} \left(\mathbb{E}_{\mu_Z^*}[\phi] - \mathbb{E}_{\mu}[\phi] \right)$$

- $\mathbb{E}_{\mu_{\mathcal{T}}^*}[\phi]$: what feature ϕ looks like in data
- $\mathbb{E}_{\mu}[\phi]$: what ϕ looks like according to model, under (θ, γ)

- Goal: tractability of the identification problem
- From definitions of \mathcal{M}_{θ} and $\Theta_{I},$ we **construct** a discrepancy function

$$T(\theta) \equiv \sup_{\phi \in \Phi_b(\mathcal{Z})} \inf_{\mu \in \mathcal{M}_\theta} \left(\mathbb{E}_{\mu_Z^*}[\phi] - \mathbb{E}_{\mu}[\phi] \right)$$

- $\mathbb{E}_{\mu_{\pi}^{*}}[\phi]$: what feature ϕ looks like in data
- $\mathbb{E}_{\mu}[\phi]$: what ϕ looks like according to model, under (θ, γ)
- Intuition: view as an adversarial game

- Goal: tractability of the identification problem
- From definitions of \mathcal{M}_{θ} and $\Theta_{I},$ we **construct** a discrepancy function

$$T(\theta) \equiv \sup_{\phi \in \Phi_b(\mathcal{Z})} \inf_{\mu \in \mathcal{M}_\theta} \left(\mathbb{E}_{\mu_Z^*}[\phi] - \mathbb{E}_{\mu}[\phi] \right)$$

- $\mathbb{E}_{\mu_{\pi}^{*}}[\phi]$: what feature ϕ looks like in data
- $\mathbb{E}_{\mu}[\phi]$: what ϕ looks like according to model, under (θ, γ)
- Intuition: view as an adversarial game
 - Critic (sup) chooses feature ϕ to maximize discrepancy

- Goal: tractability of the identification problem
- From definitions of \mathcal{M}_{θ} and $\Theta_{I},$ we **construct** a discrepancy function

$$T(\theta) \equiv \sup_{\phi \in \Phi_b(\mathcal{Z})} \inf_{\mu \in \mathcal{M}_\theta} \left(\mathbb{E}_{\mu_Z^*}[\phi] - \mathbb{E}_{\mu}[\phi] \right)$$

- $\mathbb{E}_{\mu_{\sigma}^{*}}[\phi]$: what feature ϕ looks like in data
- $\mathbb{E}_{\mu}[\phi]$: what ϕ looks like according to model, under (θ, γ)
- Intuition: view as an adversarial game
 - Critic (sup) chooses feature ϕ to maximize discrepancy
 - Defender (inf) chooses measure μ ("chooses γ ") to minimize discrepancy

- Goal: tractability of the identification problem
- From definitions of \mathcal{M}_{θ} and $\Theta_{I},$ we **construct** a discrepancy function

$$T(\theta) \equiv \sup_{\phi \in \Phi_b(\mathcal{Z})} \inf_{\mu \in \mathcal{M}_\theta} \left(\mathbb{E}_{\mu_Z^*}[\phi] - \mathbb{E}_{\mu}[\phi] \right)$$

- $\mathbb{E}_{\mu_{\pi}^{*}}[\phi]$: what feature ϕ looks like in data
- $\mathbb{E}_{\mu}[\phi]$: what ϕ looks like according to model, under (θ, γ)
- Intuition: view as an adversarial game
 - Critic (sup) chooses feature ϕ to maximize discrepancy
 - Defender (inf) chooses measure μ ("chooses γ ") to minimize discrepancy
 - $T(\theta) > 0$: Critic finds a feature where model fails to replicate data at θ

- Goal: tractability of the identification problem
- From definitions of \mathcal{M}_{θ} and $\Theta_{I},$ we **construct** a discrepancy function

$$T(\theta) \equiv \sup_{\phi \in \Phi_b(\mathcal{Z})} \inf_{\mu \in \mathcal{M}_\theta} \left(\mathbb{E}_{\mu_Z^*}[\phi] - \mathbb{E}_{\mu}[\phi] \right)$$

- $\mathbb{E}_{\mu_{\pi}^{*}}[\phi]$: what feature ϕ looks like in data
- $\mathbb{E}_{\mu}[\phi]$: what ϕ looks like according to model, under (θ, γ)
- Intuition: view as an adversarial game
 - Critic (sup) chooses feature ϕ to maximize discrepancy
 - Defender (inf) chooses measure μ ("chooses γ ") to minimize discrepancy
 - $T(\theta)>0:$ Critic finds a feature where model fails to replicate data at θ
 - $T(\theta)=0:$ Defender can always match all observed features at θ

$$T(\theta) \equiv \sup_{\phi \in \Phi_b(\mathcal{Z})} \inf_{\mu \in \mathcal{M}_\theta} \left(\mathbb{E}_{\mu_Z^*}[\phi] - \mathbb{E}_{\mu}[\phi] \right)$$

is central to the paper.

- for identification: main result
- for computation: $T(\theta)$ can be evaluated using LP
- for inference: results are based on $T_n(\theta)$ (paper)

$$T(\theta) \equiv \sup_{\phi \in \Phi_b(\mathcal{Z})} \inf_{\mu \in \mathcal{M}_\theta} \left(\mathbb{E}_{\mu_Z^*}[\phi] - \mathbb{E}_{\mu}[\phi] \right)$$

is central to the paper.

- for identification: main result
- for computation: $T(\boldsymbol{\theta})$ can be evaluated using LP
- for inference: results are based on $T_n(\theta)$ (paper)

Main results:

- Define $\Theta_{\mathrm{MI}} \equiv \{\theta \in \Theta: T(\theta) = 0\}$
- Under mild conditions, $\Theta_{\rm MI}=\Theta_{\rm I}$

Assumption (1)

 $\ensuremath{\mathcal{Z}}$ is a Polish space.

Assumption (2)

For all $\theta \in \Theta$, there exists some σ -finite positive measure $\lambda_{\theta} \in \mathfrak{B}(\mathcal{Z})$ with respect to which every $\mu \in \mathcal{M}_{\theta}$ is continuous.

Theorem (1) Let Assumptions 1 and 2 hold.

For any $\mu_Z^* \in \mathcal{P}(\mathcal{Z})$, $\Theta_{\mathrm{I}} \subseteq \Theta_{\mathrm{MI}}$.

Additionally, let $\overline{\mathcal{M}}_{\theta}$ be convex for all θ . Then $\Theta_{I} = \Theta_{MI}$.

Discussion: convexity

- Convexity of \mathcal{M}_{θ} is important (else outer set)
- Main result says:

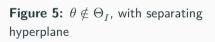
 $T(\theta) = 0 \Leftrightarrow \mu_Z^* \in \overline{\operatorname{co}}(\mathcal{M}_\theta)$

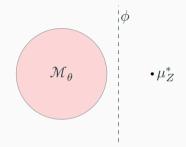
with

$$T(\theta) = \sup_{\phi \in \Phi_b(\mathcal{Z})} \inf_{\mu \in \mathcal{M}_\theta} \left(\mathbb{E}_{\mu_Z^*}[\phi] - \mathbb{E}_{\mu}[\phi] \right)$$

- Same as checking, for each ϕ ,

$$\mathbb{E}_{\mu_Z^*}[\phi] \le \inf_{\mu \in \mathcal{M}_\theta} \mathbb{E}_{\mu}[\phi]$$





Convexity in econometric models

- paper: applies result, verifying convexity for large classes of econometric models
 - common theme: many econometric models satisfy:
 - 1. linearity: for each $\theta,$ there is a L_{θ} such that $\mu_{Z,(\theta,\gamma)}=L_{\theta}\gamma$
 - 2. convexity: the set of allowed $\gamma \in \Gamma_{ heta}$ is convex
 - if linearity and convexity,
 - then \mathcal{M}_{θ} is convex (Proposition 1)
 - and our theory applies
 - paper: additional results under linearity and convexity (Propositions 1 and 2)
- this talk:
 - demonstrate usefulness of adversarial approach via computation
 - emphasize tractability

Computation: Linear Programming

Discrepancy function, pmf

computing the identified set requires evaluating

$$T(\theta) = \sup_{\phi \in \Phi_b(\mathcal{Z})} \inf_{\mu \in \mathcal{M}_\theta} \left(\mathbb{E}_{\mu_Z^*}[\phi] - \mathbb{E}_{\mu}[\phi] \right)$$

- involves optimization over measures μ and functions ϕ
- I will now show that this reduces to a linear program (LP)
- to make things concrete:
 - use pmf instead of probability measures
 - demo using the SPBC model

- discretize support: $\mathcal{Z} = \{z_1, \cdots, z_L\}, \; \mathcal{W} = \{w_1, \cdots, w_M\}$

- discretize support: $\mathcal{Z} = \{z_1, \cdots, z_L\}, \ \mathcal{W} = \{w_1, \cdots, w_M\}$

- represent probability measure μ_Z^* by pmf

$$p_Z^* = \left(p_{Z,l}^*\right) = \left(p_{Z,1}^*, \cdots, p_{Z,L}^*\right)$$

- discretize support: $\mathcal{Z} = \{z_1, \cdots, z_L\}, \; \mathcal{W} = \{w_1, \cdots, w_M\}$
- represent probability measure μ_Z^* by pmf

$$p_Z^* = \left(p_{Z,l}^* \right) = \left(p_{Z,1}^*, \cdots, p_{Z,L}^* \right)$$

• first term in $T(\theta) = \sup_{\phi \in \Phi_b(\mathcal{Z})} \inf_{\mu \in \mathcal{M}_\theta} \left(\mathbb{E}_{\mu_Z^*}[\phi] - \mathbb{E}_{\mu}[\phi] \right)$ is

$$E_{\mu_Z^*}[\phi] = \sum_{l=1}^L \phi(z_l) p_{Z,l}^* = \phi' p_Z^*$$

- discretize support: $\mathcal{Z} = \{z_1, \cdots, z_L\}, \; \mathcal{W} = \{w_1, \cdots, w_M\}$
- represent probability measure μ_Z^* by pmf

$$p_Z^* = \left(p_{Z,l}^* \right) = \left(p_{Z,1}^*, \cdots, p_{Z,L}^* \right)$$

• first term in $T(\theta) = \sup_{\phi \in \Phi_b(\mathcal{Z})} \inf_{\mu \in \mathcal{M}_\theta} \left(\mathbb{E}_{\mu_Z^*}[\phi] - \mathbb{E}_{\mu}[\phi] \right)$ is

$$E_{\mu_Z^*}[\phi] = \sum_{l=1}^L \phi(z_l) p_{Z,l}^* = \phi' p_Z^*$$

- represent every model probability $\mu_{Z,(\theta,\gamma)}$ by pmf $p_Z^{(\theta,\gamma)}$

- discretize support: $\mathcal{Z} = \{z_1, \cdots, z_L\}, \; \mathcal{W} = \{w_1, \cdots, w_M\}$
- represent probability measure μ_Z^* by pmf

$$p_Z^* = \left(p_{Z,l}^* \right) = \left(p_{Z,1}^*, \cdots, p_{Z,L}^* \right)$$

• first term in $T(\theta) = \sup_{\phi \in \Phi_b(\mathcal{Z})} \inf_{\mu \in \mathcal{M}_\theta} \left(\mathbb{E}_{\mu_Z^*}[\phi] - \mathbb{E}_{\mu}[\phi] \right)$ is

$$E_{\mu_Z^*}[\phi] = \sum_{l=1}^L \phi(z_l) p_{Z,l}^* = \phi' p_Z^*$$

- represent every model probability $\mu_{Z,(\theta,\gamma)}$ by pmf $p_Z^{(\theta,\gamma)}$
- second term, for some (θ, γ) , is

$$E_{\mu_{Z,(\theta,\gamma)}}[\phi] = \phi' p_Z^{(\theta,\gamma)}$$

$$p_W = \left(p_{W,m}\right) = \left(p_{W,1}, \cdots, p_{W,M}\right)$$

$$p_W = \left(p_{W,m}\right) = \left(p_{W,1}, \cdots, p_{W,M}\right)$$

- to enforce $\gamma\in\Gamma_{\theta}\text{, impose }p_W\geq0,\;A_{\theta}p_W=b_{\theta}$

$$p_W = \left(p_{W,m}\right) = \left(p_{W,1}, \cdots, p_{W,M}\right)$$

- to enforce $\gamma\in\Gamma_{\theta},$ impose $p_W\geq 0,\ A_{\theta}p_W=b_{\theta}$
- there exists a $L\times M$ matrix \widetilde{C}_{θ} such that

$$p_Z^{(\theta,\gamma)} = \widetilde{C}_\theta p_W$$

$$p_W = \left(p_{W,m}\right) = \left(p_{W,1}, \cdots, p_{W,M}\right)$$

- to enforce $\gamma\in\Gamma_{\theta}$, impose $p_{W}\geq 0,\;A_{\theta}p_{W}=b_{\theta}$
- there exists a $L\times M$ matrix \widetilde{C}_{θ} such that

$$p_Z^{(\theta,\gamma)} = \widetilde{C}_\theta p_W$$

• given θ , there is a linear map from pmf of W to a model pmf of Z

$$p_W = \left(p_{W,m}\right) = \left(p_{W,1}, \cdots, p_{W,M}\right)$$

- to enforce $\gamma\in\Gamma_{\theta}$, impose $p_{W}\geq 0,\;A_{\theta}p_{W}=b_{\theta}$
- there exists a $L\times M$ matrix \widetilde{C}_{θ} such that

$$p_Z^{(\theta,\gamma)} = \widetilde{C}_\theta p_W$$

- given θ , there is a linear map from pmf of W to a model pmf of Z
- write $T(\boldsymbol{\theta})$ as

$$T(\theta) = \max_{\phi \in \mathbb{R}^L: \ 0 \le \phi \le 1} \min_{p_W \in \mathbb{R}^M: \ p_W \ge 0, \ A_\theta p_W = b_\theta} \quad \underbrace{\phi' p_Z^* - \phi' \widetilde{C}_\theta p_W}_{\phi' C_\theta p_W}$$

Semiparametric binary choice

• SPBC with binary regressor and an error term with 3 points of support, $Y \in \{0, 1\}, X \in \{x_1, x_2\} \subset \mathbb{R}, U \in \{-1, 0, 1\}$

and

$$Y=1\{\beta_1+X\beta_2-U\geq 0\}$$

define

$$p_{Z}^{(\theta,\gamma)} = \begin{bmatrix} p_{Z}^{(\theta,\gamma)}(x_{1},1) \\ p_{Z}^{(\theta,\gamma)}(x_{1},0) \\ p_{Z}^{(\theta,\gamma)}(x_{2},1) \\ p_{Z}^{(\theta,\gamma)}(x_{2},0) \end{bmatrix}, \quad p_{W} = \begin{bmatrix} p_{W}(x_{1},-1) \\ p_{W}(x_{1},0) \\ p_{W}(x_{1},1) \\ p_{W}(x_{2},-1) \\ p_{W}(x_{2},0) \\ p_{W}(x_{2},1) \end{bmatrix}$$

- next slide: $p_Z^{(\theta,\gamma)} = \widetilde{C}_{\theta} p_W$

$$\begin{bmatrix} p_{Z}^{(\theta,\gamma)}(x_{1},1) \\ p_{Z}^{(\theta,\gamma)}(x_{1},0) \\ p_{Z}^{(\theta,\gamma)}(x_{2},1) \\ p_{Z}^{(\theta,\gamma)}(x_{2},0) \end{bmatrix} = \begin{bmatrix} 1\{\widetilde{x}_{1}^{\prime}\theta+1\geq 0\} & 1\{\widetilde{x}_{1}^{\prime}\theta\geq 0\} & 1\{\widetilde{x}_{1}^{\prime}\theta-1\geq 0\} & 0 & 0 & 0 \\ 1\{\widetilde{x}_{1}^{\prime}\theta+1< 0\} & 1\{\widetilde{x}_{1}^{\prime}\theta+1< 0\} & 1\{\widetilde{x}_{1}^{\prime}\theta= 0\} & 1\{\widetilde{x}_{1}^{\prime}\theta= 1< 0\} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\{\widetilde{x}_{2}^{\prime}\theta+1\geq 0\} & 1\{\widetilde{x}_{2}^{\prime}\theta\geq 0\} & 1\{\widetilde{x}_{2}^{\prime}\theta-1\geq 0\} \\ 0 & 0 & 0 & 1\{\widetilde{x}_{2}^{\prime}\theta+1< 0\} & 1\{\widetilde{x}_{2}^{\prime}\theta< 0\} & 1\{\widetilde{x}_{2}^{\prime}\theta= 1< 0\} \\ \end{bmatrix} \begin{bmatrix} p_{W}(x_{1},0) \\ p_{W}(x_{2},-1) \\ p_{W}(x_{2},0) \\ p_{W}(x_{2},0) \\ p_{W}(x_{2},1) \end{bmatrix}$$

where $\tilde{x} = (1, x)$.

-
$$p_{\widetilde{Z}}^{(\theta,\gamma)} = \widetilde{C}_{\theta} p_W$$

• \widetilde{C}_{θ} is a known matrix

- model restrictions are $A_{\theta}p_{W} = b_{\theta}$, with:

$$A_{\theta} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & -1 \end{bmatrix}, \ b_{\theta} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix},$$

- first constraint: p_W is a probability vector, $\sum_{m=1}^M p_{W,m} = 1$
- constraints 2 and 3 ensure that the median is zero:

$$\textstyle \sum_{u < 0} P(X = x, U = u) = \textstyle \sum_{u > 0} P(X = x, U = u). \label{eq:posterior}$$

Inner minimization problem is LP with coefficients $\phi' C_{\theta}$ on decision variables p_W .

$$\begin{array}{ll} \min & \phi' C_\theta p_W \\ \text{subject to} & A_\theta p_W = b_\theta, \\ & p_W \geq 0, \end{array}$$

Inner minimization problem is LP with coefficients $\phi' C_{\theta}$ on decision variables p_W .

$$\begin{array}{ll} \min & \phi' C_\theta p_W \\ \text{subject to} & A_\theta p_W = b_\theta, \\ & p_W \geq 0, \end{array}$$

Its dual is:

 $\label{eq:alpha} \begin{array}{ll} \max & \lambda' b_\theta \\ \text{subject to} & \lambda' A_\theta \leq \phi' C_\theta, \end{array}$

with λ the dual variables for constraints in primal.

Strong duality holds, so can replace inner minimization by its dual.

Substituting dual into $T(\theta)$ means we now maximize over ϕ (as before) and λ (dual):

$$T(\theta) = \begin{cases} \max_{\lambda,\phi} & \lambda' b_{\theta} \\ \text{subject to} & A'_{\theta} \lambda \leq C'_{\theta} \phi, \\ & 0 \leq \phi \leq 1. \end{cases}$$
(1)

This is a LP: we have achieved tractability for $T(\theta)$ and therefore Θ_I .

Takeaway: to determine if $\theta \in \Theta_I$:

- solve an LP for $T(\theta)$
- checking $T(\theta) \leq 0.$
- negligible computation time, even for very large (L, M) (stay tuned)
- writing code for a specific model is trivial. LP solver only needs:
 - 1. supports \mathcal{Z}, \mathcal{W} ;
 - 2. true parameter values (θ^*, p_W^*) ;
 - 3. the matrix \widetilde{C}_{θ} ;
 - 4. restrictions (A_{θ}, b_{θ}) ;

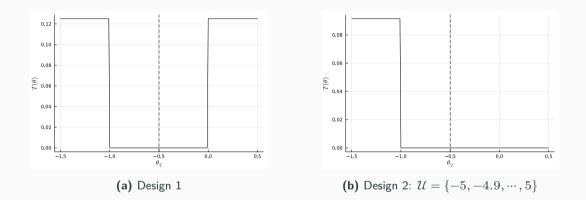


Figure 6: $T(\theta)$ for maximum score.

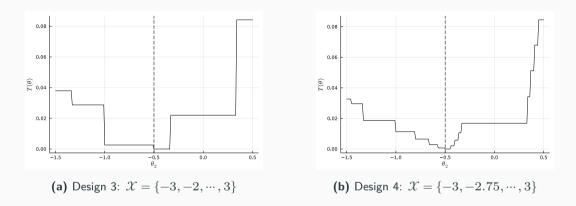


Figure 7: $T(\theta)$ for maximum score.

Computational efficiency:

Design	θ_{2}	θ_3	K_{u}	K_x
1	0.0024	0.0016	3	2
2	0.0033	0.0023	101	2
3	0.0083	0.0077	101	7
4	0.0522	0.0536	101	25

Table 1: Time, in seconds, for one evaluation of $T(\theta)$.

Competing methods in partial identification: Design 4 picture would take days.

Binary choice with fixed effects

- Focus on most challenging flavour:
 - nonlinear / discrete choice
 - fixed effects
 - short-T setting (fixed number of time periods)
- Strict and sequential exogeneity
- Get both structural and counterfactual parameters

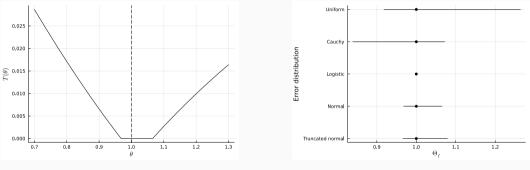
Textbook binary choice panel with fixed effects:

$$Y_{it} = 1 \left\{ \alpha_i + X_{it}'\beta + U_{it} \ge 0 \right\}, \ t = 1, \cdots, T$$

and $U_i | X_i \sim F$.

•
$$T = 2$$
, $X_1 = 0$, $X_2 = 1$
• $\alpha \in \{-5, -4.9, \cdots, 4.8, 4.9, 5.0\}$ with $P(\alpha = a) \propto \exp(-a^2/2)$

- on my laptop, it takes 0.0036 seconds to compute $T(\theta)$
- logit: β_0 is point-identified
- probit: $\Theta_I = [0.968, 1.065]$



(a) $T(\theta)$ for the probit model.

(b) Θ_I for various error distributions.

Figure 8: Identified sets for the static binary choice model with X = (0, 1), $\beta_0 = 1$.

• probit model, $T \in \{2,3\}$

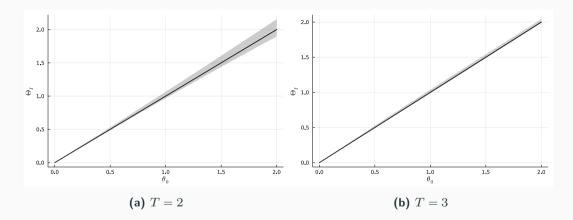


Figure 9: Identified sets for regression coefficient in static binary choice probit.

• T = 4: point-identified if you don't have a microscope

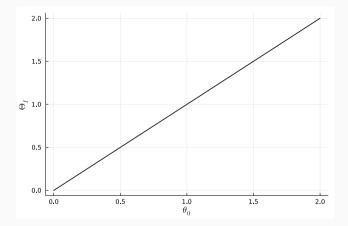


Figure 10: Identified sets for regression coefficient in static binary choice probit, T = 4

- average treatment effect of moving a randomly selected individual's \boldsymbol{x}_t from 0 to 1, i.e.

$$(a) T = 2$$

$$\mathsf{ATE}(0,1;\beta) = E[H(\alpha + \beta) - H(\alpha)].$$

Figure 11: Identified sets for ATE in static binary choice probit.

Binary choice, strict exogeneity

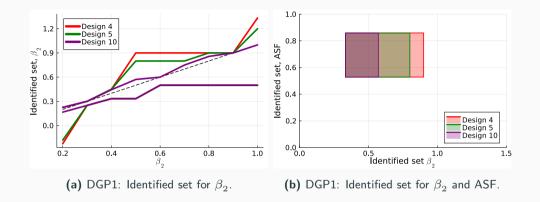
SPBC with fixed effects:

$$Y_t = 1\{X_t'\beta + \alpha + V_t \ge 0\}, \quad t = 1, 2$$

- outcomes $Y_t \in \{0,1\}$ and regressors $X_t \in \mathcal{X}_t$
- fixed effect $\alpha \in \mathbb{R}$ and error terms $V_t \in \mathbb{R}$
- assume strict stationarity

$$V_1|\alpha, X_1, X_2 \stackrel{d}{=} V_2|\alpha, X_1, X_2$$

- literature
 - β : Manski (1985); Khan et al. (2023); Gao and Wang (2024); Mbakop (2024)
 - partial effects:
 - Botosaru and Muris (2024)
 - parametric: Aguirregabiria and Carro (2021), Davezies et al. (2024); Dobronyi et al. (2021); Pakel and Weidner (2024); Dano (2024)



We are the first to obtain results in panel (b).

Sequential exogeneity

predetermined regressors:

$$V_1 | \alpha, X_1 \stackrel{d}{=} V_2 | \alpha, X_1, X_2$$

- $\Gamma_{\theta}(\mathcal{W})$ not convex because of $V_{2}\perp X_{2}$
- Theorem 3: \mathcal{M}_{θ} is convex
- computation via a variant of our LP
- literature:
 - parametric: Arellano and Carrasco (2003); Bonhomme et al. (2023); Chamberlain (2023); Pigini and Bartolucci (2022)
 - ???



Figure 13: DGP2: Identified set for β_2 .

Conclusion

- 1. general framework for (partial) identification
- 2. novel discrepancy function yields tractable, sharp ID
- 3. works for general class of models, for structural and counterfactual parameters
- 4. break new ground in nonlinear panels

Paper on arXiv: "An Adversarial Approach to Identification"