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Fixed effects in linear and nonlinear
panel models



Linear panel models

The linear panel model with fixed effects is one of the core tools of applied economist.

Figure 1: Currie et al., AEA P+P 2020
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Outcome equation of linear panel model:

𝑌𝑖𝑡 = 𝛼𝑖 + 𝑋′
𝑖𝑡𝛽 + 𝑈𝑖𝑡, 𝑡 = 1, ⋯ , 𝑇

• fixed effects (FE):
• control for unobserved heterogeneity
• no restriction on relationship (𝛼𝑖, 𝑋𝑖1, ⋯ , 𝑋𝑖𝑇 )

• OLS of 𝑌𝑖𝑡 on 𝑋𝑖𝑡 is inconsistent for 𝛽

In linear panel model (+ strict exogeneity):

• OLS of 𝑌𝑖𝑡 − 𝑌𝑖 on 𝑋𝑖𝑡 − 𝑋𝑖 is consistent for 𝛽
• 𝛽 is regression coefficient and partial effect

Note:

• can estimate (distribution of) 𝛼𝑖 = 𝑌𝑖𝑡 − 𝑋′
𝑖𝑡𝛽 − 𝑈𝑖𝑡
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Nonlinear panel models

Textbook binary choice panel with fixed effects:

𝑌𝑖𝑡 = 1 {𝛼𝑖 + 𝑋′
𝑖𝑡𝛽 + 𝑈𝑖𝑡 ≥ 0} , 𝑡 = 1, ⋯ , 𝑇

and 𝑈𝑖|𝑋𝑖 ∼ 𝐹 .

If 𝑇 is fixed, then

• (𝛽, 𝑈) does not pin down 𝛼𝑖
• example: if 𝑋′

𝑖𝑡𝛽 + 𝑈𝑖𝑡 = 0 then any 𝛼𝑖 ≥ 0 is compatible with 𝑌𝑖𝑡 = 1
• (𝛽, 𝐹) does not pin down distribution of FEs
• distribution of FEs is partially identified

⇒ Partial identification is widespread in nonlinear panels
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Consequence 1: partial identification of 𝛽

Figure 2: Identified sets in binary choice models,
Botosaru, Loh, Muris (2025+)

• partial ID of FE spills over to 𝛽
• with exceptions (logit)
• identified sets tend to be small

• figure: worst case,
𝑋, 𝑌 ∈ {0, 1}, 𝑇 = 2
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Consequence 1: literature

• huge literature on point ID for specific models
• Chamberlain (REStud 1980; ECMA 2010); Manski (ECMA 1987)

• small literature on point identification for larger classes
• Bonhomme (ECMA 2012); Botosaru, Muris, Pendakur (JoE 2023)

• partial identification results for specific models
• Shi et al. (ECMA 2018); Aristodemou (JoE 2020); Khan et al. (QE 2021); Pakes

and Porter (QE 2024); Mbakop (JPE RR)
• today’s paper: characterize identified set for 𝛽:

• in a large class of models
• with point or partial ID
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I have contributed to this literature:

• static ordered choice (Muris, REStat 2017)
• interval-censored models (Abrevaya and Muris, JAE 2020)
• general result + collective households (Botosaru, Muris, Pendakur, JoE 2023)
• dynamic ordered choice:

• Muris, Raposo, Vandoros (REStat 2025+)
• Honore, Muris, Weidner (QE 2025+)
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Consequence 2: partial identification of partial effects

• in applications, focus on counterfactual choice probabilities

𝐸 [1{𝛼𝑖 + 𝑥∗𝛽 + 𝑈𝑖𝑡 ≥ 0}|𝑋𝑖 = 𝑥]

and differences/derivatives (partial effects)
• partial effects depend on FE distribution
• even if 𝛽 is point identified, partial effects are not
• estimation and inference is very challenging
• traditional advice: use random effects or linear models if you want partial effects
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Consequence 2: literature

• Wooldridge’s grad textbook (2010): “Unfortunately, we cannot estimate the
partial effects on the response probabilities …”

• recent work makes progress on this issue:
• Chernozhukov et al. (ECMA 2013); Honore and Tamer (ECMA 2006)
• Botosaru and Muris (WP 2017; JoE 2023; JoE 2024)
• logit models

• Dobronyi et al. (REStud RR); Davezies et al. (REStud RR); Aguirregabiria and Carro
(REStat 2025+); Dano (WP, 2025+); Pakel and Weidner (WP 2025+)

• literature is fragmented, few solutions and they depend on model/parameter
• today’s paper:

• ID common parameters and PE …
• … in a general class of models.
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Recap

• linear panels with fixed effects are central to applied economics
• would like to use FE in nonlinear models, but:

• in most models, 𝛽 not point identified
• even if 𝛽 point identified, partial effects are not
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Does it matter?

1. yes: many models are nonlinear
• textbook models: binary and (un)ordered choice
• structural models

2. can’t we just do OLS?
• for textbook cross-sectional models, OLS approximates average partial effects
• for panels, just do TWFE?
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No.
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• Previous slide DGP:
• binary choice outcomes
• simple DiD (𝐷1 = 0, 𝐷2 = coin flip)
• standard logistic errors (𝑈1, 𝑈2)
• fixed effects: 𝛼 = −0.5 + 𝑐1𝐷2
• time effects: 𝜆1 = 0, 𝜆2 = 1,
• outcome equation:

𝑌𝑡 = 1{𝛼 + 𝐷𝑡 × 1 + 𝜆𝑡 + 𝑈𝑡 ≥ 0}
• effect of 𝐷 on 𝑌 is positive
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Recap

• linear panels with fixed effects are central to applied economics
• would like to use fixed effects in nonlinear panel models, too, but:

• in most models, 𝛽 not point identified
• even if 𝛽 available, cannot get partial effects

• OLS fails due to combination of FE, time effects, and nonlinearity
• partial identification seems unavoidable

Can we develop an approach that works under partial identification, and that is easy to
implement in applied practice?
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This is where adversarial identification comes in!

Overview for “Adversarial identification”

1. Introduction
2. Model
3. Main result
4. Computation via linear programming
5. Results for nonlinear panels
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Introduction



What? Framework for partial identification + inference

Why?
• Applicable to a wide range of models
• Sharp identification of structural and counterfactual parameters
• Computational efficiency via linear programming
• Inference via sample analogs (paper)
• Break new ground in nonlinear panels

How?
• Construct a discrepancy function with maximin formulation
• Leverage:

• convexity of the set of model probabilities
• a linearity property of most econometric models 17



Semiparametric binary choice model

To establish notation and terminology:

• running example: semiparametric binary choice (SPBC) model
• start from cross-sectional logit/probit model with

𝑌𝑖 = 1{𝑋′
𝑖𝜃 + 𝑈𝑖 ≥ 0}

with 𝑈𝑖 ⟂ 𝑋𝑖 and 𝑈𝑖 is standard logistic/normal
• weaken assumptions on (𝑈, 𝑋) to med(𝑈𝑖|𝑋𝑖) = 0.

Compare: linear model with 𝑈𝑖 ∼ 𝒩(0, 𝜎2) relaxed to 𝐸(𝑈𝑖|𝑋𝑖) = 0.
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• SPBC model is surprisingly hard to analyze…
• … which is why we don’t see it in the wild
• if all regressors are discrete:

• 𝛽 partially identified (even with a scale normalization)
• partial effects partially identified
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One of our innovations: how we set up the econometric model.

• SPBC model has three ingredients:
• unobserved error term 𝑈
• observed regressors 𝑋
• observed outcome 𝑌 ∈ {0, 1}

• inputs 𝑊 = (𝑋, 𝑈) have probability measure 𝛾
• we know: its marginal distribution with respect to 𝑋
• we know: 𝑃(𝑈𝑖 ≤ 0|𝑋𝑖 = 𝑥) = 0.5 for each 𝑥

• outputs 𝑍 = (𝑋, 𝑌 ) have probability measure 𝜇𝑍
• observed one: 𝜇∗

𝑍

Our focus on 𝛾 and 𝜇 is novel and key to our analysis.
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SPBC model has three properties:

1. for each parameter 𝛽 and for each distribution of inputs 𝛾, it returns a
distribution of outputs 𝜇𝑍,(𝛽,𝛾)

• in other words: model is a map (𝛽, 𝛾) ↦ 𝜇𝑍,(𝛽,𝛾)

2. at each 𝛽, map from 𝛾 to 𝜇 is linear
3. set of all 𝛾 compatible with “what we know” is convex

• set of all median-zero 𝛾 is convex

• paper: properties 1-3 hold for most econometric models
• derive results from these basic properties
• we use convex analysis, functional analysis, and convex functional analysis

• this talk: 1-3 hold for pmf version of SPBC model
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Model



Setup and Notation

• 𝑍: observable Borel measurable random variable, support 𝒵
• 𝜇∗

𝑍: true probability measure of 𝑍
• 𝜇𝑍,(𝜃,𝛾): model probability for each 𝜃 ∈ Θ and 𝛾 ∈ Γ𝜃

• Θ: parameter space for parameter of interest 𝜃
• Γ𝜃: parameter space for auxiliary parameters 𝛾

In many models: 𝛾 is distribution of unobserved heterogeneity.
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Model Probabilities

Set of model probabilities

ℳ𝜃 ≡ {𝜇𝑍,(𝜃,𝛾) ∶ 𝛾 ∈ Γ𝜃}

for a fixed 𝜃.
ℳ𝜃

ℳ𝜃′

Figure 3: Each point corresponds to a model
probability for a given (𝜃, 𝛾).
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Identified Set

Identified set for 𝜃 is:

ΘI ≡ {𝜃 ∈ Θ ∶ 𝜇∗
𝑍 ∈ ℳ𝜃}

where ℳ𝜃 is the closure of ℳ𝜃.
ℳ𝜃

ℳ𝜃′

ℳ𝜃″

𝜇∗
𝑍

Figure 4: {𝜃, 𝜃′} ⊂ Θ𝐼 , 𝜃″ ∉ Θ𝐼 .
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Identified set for 𝜃 is:
ΘI ≡ {𝜃 ∈ Θ ∶ 𝜇∗

𝑍 ∈ ℳ𝜃}
where ℳ𝜃 is the closure of ℳ𝜃.

Problem: this definition is not tractable.
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Main result



Discrepancy function

• Goal: tractability of the identification problem

• From definitions of ℳ𝜃 and Θ𝐼 , we construct a discrepancy function

𝑇 (𝜃) ≡ sup
𝜙∈Φ𝑏(𝒵)

inf
𝜇∈ℳ𝜃

(𝔼𝜇∗
𝑍

[𝜙] − 𝔼𝜇[𝜙])

where Φ𝑏(𝒵) is the set of bounded Borel measurable functions from 𝒵 to [0, 1]

• 𝔼𝜇∗
𝑍

[𝜙]: what feature 𝜙 looks like in data
• 𝔼𝜇[𝜙]: what 𝜙 looks like according to model, under (𝜃, 𝛾)

• Intuition: view as an adversarial game

• Critic (sup) chooses feature 𝜙 to maximize discrepancy
• Defender (inf) chooses measure 𝜇 (“chooses 𝛾”) to minimize discrepancy
• 𝑇 (𝜃) > 0: Critic finds a feature where model fails to replicate data at 𝜃
• 𝑇 (𝜃) = 0: Defender can always match all observed features at 𝜃
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Discrepancy function

• Goal: tractability of the identification problem
• From definitions of ℳ𝜃 and Θ𝐼 , we construct a discrepancy function

𝑇 (𝜃) ≡ sup
𝜙∈Φ𝑏(𝒵)

inf
𝜇∈ℳ𝜃

(𝔼𝜇∗
𝑍

[𝜙] − 𝔼𝜇[𝜙])

where Φ𝑏(𝒵) is the set of bounded Borel measurable functions from 𝒵 to [0, 1]
• 𝔼𝜇∗

𝑍
[𝜙]: what feature 𝜙 looks like in data

• 𝔼𝜇[𝜙]: what 𝜙 looks like according to model, under (𝜃, 𝛾)
• Intuition: view as an adversarial game
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Discrepancy function

𝑇 (𝜃) ≡ sup
𝜙∈Φ𝑏(𝒵)

inf
𝜇∈ℳ𝜃

(𝔼𝜇∗
𝑍

[𝜙] − 𝔼𝜇[𝜙])

is central to the paper.

• for identification: main result
• for computation: 𝑇 (𝜃) can be evaluated using LP
• for inference: results are based on 𝑇𝑛(𝜃) (paper)

Main results:

• Define ΘMI ≡ {𝜃 ∈ Θ ∶ 𝑇 (𝜃) = 0}
• Under mild conditions, ΘMI = ΘI
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Main result

Assumption (1)

𝒵 is a Polish space.

Assumption (2)

For all 𝜃 ∈ Θ, there exists some 𝜎-finite positive measure 𝜆𝜃 ∈ 𝔅(𝒵) with respect to
which every 𝜇 ∈ ℳ𝜃 is continuous.

Theorem (1)
Let Assumptions 1 and 2 hold.

For any 𝜇∗
𝑍 ∈ 𝒫(𝒵), ΘI ⊆ ΘMI.

Additionally, let ℳ𝜃 be convex for all 𝜃. Then ΘI = ΘMI.
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Discussion: convexity

• Convexity of ℳ𝜃 is important (else outer set)
• Main result says:

𝑇 (𝜃) = 0 ⇔ 𝜇∗
𝑍 ∈ co(ℳ𝜃)

with

𝑇 (𝜃) = sup
𝜙∈Φ𝑏(𝒵)

inf
𝜇∈ℳ𝜃

(𝔼𝜇∗
𝑍

[𝜙] − 𝔼𝜇[𝜙])

• Same as checking, for each 𝜙,

𝔼𝜇∗
𝑍

[𝜙] ≤ inf
𝜇∈ℳ𝜃

𝔼𝜇[𝜙]

ℳ𝜃 𝜇∗
𝑍

𝜙

Figure 5: 𝜃 ∉ Θ𝐼 , with separating
hyperplane
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Convexity in econometric models

• paper: applies result, verifying convexity for large classes of econometric models
• common theme: many econometric models satisfy:

1. linearity: for each 𝜃, there is a 𝐿𝜃 such that 𝜇𝑍,(𝜃,𝛾) = 𝐿𝜃𝛾
2. convexity: the set of allowed 𝛾 ∈ Γ𝜃 is convex

• if linearity and convexity,
• then ℳ𝜃 is convex (Proposition 1)
• and our theory applies
• paper: additional results under linearity and convexity (Propositions 1 and 2)

• this talk:
• demonstrate usefulness of adversarial approach via computation
• emphasize tractability
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Computation: Linear Programming



Discrepancy function, pmf

• computing the identified set requires evaluating

𝑇 (𝜃) = sup
𝜙∈Φ𝑏(𝒵)

inf
𝜇∈ℳ𝜃

(𝔼𝜇∗
𝑍

[𝜙] − 𝔼𝜇[𝜙])

• involves optimization over measures 𝜇 and functions 𝜙
• I will now show that this reduces to a linear program (LP)
• to make things concrete:

• use pmf instead of probability measures
• demo using the SPBC model
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• discretize support: 𝒵 = {𝑧1, ⋯ , 𝑧𝐿}, 𝒲 = {𝑤1, ⋯ , 𝑤𝑀}

• represent probability measure 𝜇∗
𝑍 by pmf

𝑝∗
𝑍 = (𝑝∗

𝑍,𝑙) = (𝑝∗
𝑍,1, ⋯ , 𝑝∗

𝑍,𝐿)

• first term in 𝑇 (𝜃) = sup𝜙∈Φ𝑏(𝒵) inf𝜇∈ℳ𝜃
(𝔼𝜇∗

𝑍
[𝜙] − 𝔼𝜇[𝜙]) is

𝐸𝜇∗
𝑍

[𝜙] =
𝐿

∑
𝑙=1

𝜙(𝑧𝑙)𝑝∗
𝑍,𝑙 = 𝜙′𝑝∗

𝑍

• represent every model probability 𝜇𝑍,(𝜃,𝛾) by pmf 𝑝(𝜃,𝛾)
𝑍

• second term, for some (𝜃, 𝛾), is

𝐸𝜇𝑍,(𝜃,𝛾)
[𝜙] = 𝜙′𝑝(𝜃,𝛾)

𝑍
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• represent every 𝛾 for 𝑊 by a pmf

𝑝𝑊 = (𝑝𝑊,𝑚) = (𝑝𝑊,1, ⋯ , 𝑝𝑊,𝑀)

• to enforce 𝛾 ∈ Γ𝜃, impose 𝑝𝑊 ≥ 0, 𝐴𝜃𝑝𝑊 = 𝑏𝜃
• there exists a 𝐿 × 𝑀 matrix 𝐶𝜃 such that

𝑝(𝜃,𝛾)
𝑍 = 𝐶𝜃𝑝𝑊

• given 𝜃, there is a linear map from pmf of 𝑊 to a model pmf of 𝑍

• write 𝑇 (𝜃) as

𝑇 (𝜃) = max
𝜙∈ℝ𝐿∶ 0≤𝜙≤1

min
𝑝𝑊 ∈ℝ𝑀 ∶ 𝑝𝑊 ≥0, 𝐴𝜃𝑝𝑊 =𝑏𝜃

𝜙′𝑝∗
𝑍 − 𝜙′𝐶𝜃𝑝𝑊⏟⏟⏟⏟⏟⏟⏟

𝜙′𝐶𝜃𝑝𝑊
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Semiparametric binary choice

• SPBC with binary regressor and an error term with 3 points of support,

𝑌 ∈ {0, 1}, 𝑋 ∈ {𝑥1, 𝑥2} ⊂ ℝ, 𝑈 ∈ {−1, 0, 1}
and

𝑌 = 1{𝛽1 + 𝑋𝛽2 − 𝑈 ≥ 0}
• define

𝑝(𝜃,𝛾)
𝑍 =

⎡
⎢⎢⎢
⎣

𝑝(𝜃,𝛾)
𝑍 (𝑥1, 1)

𝑝(𝜃,𝛾)
𝑍 (𝑥1, 0)

𝑝(𝜃,𝛾)
𝑍 (𝑥2, 1)

𝑝(𝜃,𝛾)
𝑍 (𝑥2, 0)

⎤
⎥⎥⎥
⎦

, 𝑝𝑊 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑝𝑊 (𝑥1, −1)
𝑝𝑊 (𝑥1, 0)
𝑝𝑊 (𝑥1, 1)

𝑝𝑊 (𝑥2, −1)
𝑝𝑊 (𝑥2, 0)
𝑝𝑊 (𝑥2, 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

• next slide: 𝑝(𝜃,𝛾)
𝑍 = 𝐶𝜃𝑝𝑊
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⎡
⎢
⎢
⎢
⎣

𝑝(𝜃,𝛾)
𝑍 (𝑥1, 1)

𝑝(𝜃,𝛾)
𝑍 (𝑥1, 0)

𝑝(𝜃,𝛾)
𝑍 (𝑥2, 1)

𝑝(𝜃,𝛾)
𝑍 (𝑥2, 0)

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

1{𝑥′
1𝜃 + 1 ≥ 0} 1{𝑥′

1𝜃 ≥ 0} 1{𝑥′
1𝜃 − 1 ≥ 0} 0 0 0

1{𝑥′
1𝜃 + 1 < 0} 1{𝑥′

1𝜃 < 0} 1{𝑥′
1𝜃 − 1 < 0} 0 0 0

0 0 0 1{𝑥′
2𝜃 + 1 ≥ 0} 1{𝑥′

2𝜃 ≥ 0} 1{𝑥′
2𝜃 − 1 ≥ 0}

0 0 0 1{𝑥′
2𝜃 + 1 < 0} 1{𝑥′

2𝜃 < 0} 1{𝑥′
2𝜃 − 1 < 0}

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑝𝑊 (𝑥1, −1)
𝑝𝑊 (𝑥1, 0)
𝑝𝑊 (𝑥1, 1)

𝑝𝑊 (𝑥2, −1)
𝑝𝑊 (𝑥2, 0)
𝑝𝑊 (𝑥2, 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

where ̃𝑥 = (1, 𝑥).

• 𝑝(𝜃,𝛾)
𝑍 = 𝐶𝜃𝑝𝑊

• 𝐶𝜃 is a known matrix
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• model restrictions are 𝐴𝜃𝑝𝑊 = 𝑏𝜃, with:

𝐴𝜃 = ⎡
⎢
⎣

1 1 1 1 1 1
1 0 −1 0 0 0
0 0 0 1 0 −1

⎤
⎥
⎦

, 𝑏𝜃 = ⎡
⎢
⎣

1
0
0

⎤
⎥
⎦

,

• first constraint: 𝑝𝑊 is a probability vector, ∑𝑀
𝑚=1 𝑝𝑊,𝑚 = 1

• constraints 2 and 3 ensure that the median is zero:
∑𝑢<0 𝑃(𝑋 = 𝑥, 𝑈 = 𝑢) = ∑𝑢>0 𝑃(𝑋 = 𝑥, 𝑈 = 𝑢).
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Duality

Inner minimization problem is LP with coefficients 𝜙′𝐶𝜃 on decision variables 𝑝𝑊 .

min 𝜙′𝐶𝜃𝑝𝑊
subject to 𝐴𝜃𝑝𝑊 = 𝑏𝜃,

𝑝𝑊 ≥ 0,

Its dual is:
max 𝜆′𝑏𝜃
subject to 𝜆′𝐴𝜃 ≤ 𝜙′𝐶𝜃,

with 𝜆 the dual variables for constraints in primal.

Strong duality holds, so can replace inner minimization by its dual.
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Substituting dual into 𝑇 (𝜃) means we now maximize over 𝜙 (as before) and 𝜆 (dual):

𝑇 (𝜃) =
⎧{
⎨{⎩

max𝜆,𝜙 𝜆′𝑏𝜃
subject to 𝐴′

𝜃𝜆 ≤ 𝐶′
𝜃𝜙,

0 ≤ 𝜙 ≤ 1.
(1)

This is a LP: we have achieved tractability for 𝑇 (𝜃) and therefore Θ𝐼 .
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Takeaway: to determine if 𝜃 ∈ Θ𝐼 :

• solve an LP for 𝑇 (𝜃)
• checking 𝑇 (𝜃) ≤ 0.
• negligible computation time, even for very large (𝐿, 𝑀) (stay tuned)
• writing code for a specific model is trivial. LP solver only needs:

1. supports 𝒵, 𝒲;
2. true parameter values (𝜃∗, 𝑝∗

𝑊 );
3. the matrix 𝐶𝜃;
4. restrictions (𝐴𝜃, 𝑏𝜃);
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(a) Design 1 (b) Design 2: 𝒰 = {−5, −4.9, ⋯ , 5}

Figure 6: 𝑇 (𝜃) for maximum score.
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(a) Design 3: 𝒳 = {−3, −2, ⋯ , 3} (b) Design 4: 𝒳 = {−3, −2.75, ⋯ , 3}

Figure 7: 𝑇 (𝜃) for maximum score.
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Computational efficiency:

Design 𝜃2 𝜃3 𝐾𝑢 𝐾𝑥

1 0.0024 0.0016 3 2
2 0.0033 0.0023 101 2
3 0.0083 0.0077 101 7
4 0.0522 0.0536 101 25

Table 1: Time, in seconds, for one evaluation of 𝑇 (𝜃).

Competing methods in partial identification: Design 4 picture would take days.
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Binary choice with fixed effects



Panel Models

• Focus on most challenging flavour:
• nonlinear / discrete choice
• fixed effects
• short-𝑇 setting (fixed number of time periods)

• Strict and sequential exogeneity
• Get both structural and counterfactual parameters
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Binary choice, parametric

Textbook binary choice panel with fixed effects:

𝑌𝑖𝑡 = 1 {𝛼𝑖 + 𝑋′
𝑖𝑡𝛽 + 𝑈𝑖𝑡 ≥ 0} , 𝑡 = 1, ⋯ , 𝑇

and 𝑈𝑖|𝑋𝑖 ∼ 𝐹 .

• 𝑇 = 2, 𝑋1 = 0, 𝑋2 = 1
• 𝛼 ∈ {−5, −4.9, ⋯ , 4.8, 4.9, 5.0} with 𝑃(𝛼 = 𝑎) ∝ exp(−𝑎2/2).
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• on my laptop, it takes 0.0036 seconds to compute 𝑇 (𝜃)
• logit: 𝛽0 is point-identified
• probit: Θ𝐼 = [0.968, 1.065]

(a) 𝑇 (𝜃) for the probit model. (b) Θ𝐼 for various error distributions.

Figure 8: Identified sets for the static binary choice model with 𝑋 = (0, 1), 𝛽0 = 1.
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• probit model, 𝑇 ∈ {2, 3}

(a) 𝑇 = 2 (b) 𝑇 = 3

Figure 9: Identified sets for regression coefficient in static binary choice probit.
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• 𝑇 = 4: point-identified if you don’t have a microscope

Figure 10: Identified sets for regression coefficient in static binary choice probit, 𝑇 = 4
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• average treatment effect of moving a randomly selected individual’s 𝑥𝑡 from 0 to
1, i.e.

ATE(0, 1; 𝛽) = 𝐸[𝐻(𝛼 + 𝛽) − 𝐻(𝛼)].

(a) 𝑇 = 2 (b) 𝑇 = 3

Figure 11: Identified sets for ATE in static binary choice probit.
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Binary choice, strict exogeneity

SPBC with fixed effects:

𝑌𝑡 = 1{𝑋′
𝑡𝛽 + 𝛼 + 𝑉𝑡 ≥ 0}, 𝑡 = 1, 2

• outcomes 𝑌𝑡 ∈ {0, 1} and regressors 𝑋𝑡 ∈ 𝒳𝑡
• fixed effect 𝛼 ∈ ℝ and error terms 𝑉𝑡 ∈ ℝ
• assume strict stationarity

𝑉1|𝛼, 𝑋1, 𝑋2
𝑑= 𝑉2|𝛼, 𝑋1, 𝑋2

• literature
• 𝛽: Manski (1985); Khan et al. (2023); Gao and Wang (2024); Mbakop (2024)
• partial effects:

• Botosaru and Muris (2024)
• parametric: Aguirregabiria and Carro (2021), Davezies et al. (2024); Dobronyi et

al. (2021); Pakel and Weidner (2024); Dano (2024)
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(a) DGP1: Identified set for 𝛽2. (b) DGP1: Identified set for 𝛽2 and ASF.

We are the first to obtain results in panel (b).
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Sequential exogeneity

• predetermined regressors:

𝑉1|𝛼, 𝑋1
𝑑= 𝑉2|𝛼, 𝑋1, 𝑋2

• Γ𝜃(𝒲) not convex because of 𝑉2 ⟂ 𝑋2
• Theorem 3: ℳ𝜃 is convex
• computation via a variant of our LP
• literature:

• parametric: Arellano and Carrasco (2003); Bonhomme et al. (2023); Chamberlain
(2023); Pigini and Bartolucci (2022)

• ???
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Figure 13: DGP2: Identified set for 𝛽2. 52



Conclusion



Summary

1. general framework for (partial) identification
2. novel discrepancy function yields tractable, sharp ID
3. works for general class of models, for structural and counterfactual parameters
4. break new ground in nonlinear panels

Paper on arXiv: “An Adversarial Approach to Identification”

53


	Fixed effects in linear and nonlinear panel models
	Introduction
	Model
	Main result
	Computation: Linear Programming
	Binary choice with fixed effects
	Conclusion

