Estimation in the Fixed Effects Ordered Logit Model

Chris Muris (SFU)

Outline

Introduction

Model and main result

Cut points

Estimation

Simulations and illustration

Conclusion

Setting

- 1. **Fixed-**T **panel.** A random sample $\{(y_{it}, X_{it}), i = 1, \dots, N, t = 1, \dots, T\}$, with $N \to \infty$
- 2. **Ordered logit**. y_{it} is an ordered response in $\{1, 2, \dots, J\}$,

$$y_{it}^{*} = \alpha_{i} + X_{it}\beta + u_{it},$$

$$y_{it} = \begin{cases} 1 & \text{if } y_{it}^{*} < \gamma_{1}, \\ 2 & \text{if } \gamma_{1} \leq y_{it}^{*} < \gamma_{2}, \\ \vdots & \vdots \\ J & \text{if } \gamma_{J-1} \leq y_{it}^{*}, \end{cases}$$

for cut points γ_i . Errors are logistic.

3. **Fixed effects.** Joint distribution of α_i and X_i is unrestricted.

Contribution

This paper:

- Estimation of differences of the cut points
- More efficient estimation of the regression coefficient

Why does this matter?

- Cut points: bounds on partial effects
- Model is heavily used (BSW, 2015: >150 cites)

Application (1): Allen and Arnutt (WP, 2013)

Effect of "Teach First" program on educational outcomes.

- y_{it}: letter grade student i for subject-year t
- $D_{it} \in \{0,1\}$: school **enrolled** in "Teach First"?
- Latent variable model:

$$y_{it}^* = \alpha_i + \beta_1 D_{it} + X_{it} \beta_2 + u_{it},$$

where

- α_i is **unobserved** student ability
- X_{it} are controls

Application (1): Allen and Arnutt (WP, 2013)

All three model ingredients are present

- 1. **Fixed-** *T*: number of subjects per student is much smaller than the number of students
- 2. Ordered: letter grade is an ordered outcome
- 3. **Fixed effects:** schools with results in the bottom 30% are eligible

Application (2): Frijters et al. (AER, 2004):

Effect of income on life satisfaction

- y_{it} : **life satisfaction** on scale $\{0, \dots, 10\}$
 - "completely dissatisfied" to "completely satisfied".
- X_{it}: real household **income**
- Latent variable model: $y_{it}^* = \alpha_i + \beta_1 X_{it} + Z_{it} \beta_2 + u_{it}$
 - α_i : unobserved student ability
 - X_{it} may correlated with α_i
 - *Z_{it}*: other controls.

More applications

Health

- Khanam et al. (JHE, 2014): income and child health
- Carman (AER, 2013): intergenerational transfers and health
- Frijters et al. (JHE, 2005): income on health

Labor

- Hamermesh (JHR, 2001): earnings shocks and job satisfaction
- Das and van Soest (JEBO, 1999): expectations about future income

More applications (2)

Happiness

- Frijters et al. (AER, 2004): income and life satisfaction
- Blanchflower and Oswald (JPE, 2004): trends in US life satisfaction

Credit / debt ratings

- Amato, Furfine (JBF 2003): credit ratings are not procyclical
- Afonso et al. (IJOFE, 2013): determinants of sovereign debt ratings

Education

 Allen and Alnutt (2013): effect of "Teach First" program on student achievement

Literature

- Chamberlain (RES, 1980): binary choice and unordered choice
- Das and van Soest (JEBO, 1999): all cutoffs
- Ferrer-i-Carbonell and Frijters (EJ, 2004): individual-specific cutoffs
- Baetschmann et al. (JRSS-A, 2015): small-sample improvements

None of these papers estimate the cut point differences.

Outline

Introduction

Model and main result

Cut points

Estimation

Simulations and illustration

Conclusion

Model

• Random sample of size $n \to \infty$, T fixed:

$$\{(y_{i1},\cdots,y_{iT},X_{i1},\cdots,X_{iT}), i=1,\cdots,n\}$$

- y_{it} is an ordered outcome in $\{1, \dots, J\}$
- $X_{it} = (X_{it,1}, \cdots, X_{it,K})$ are covariates
- **Unobserved heterogeneity** in the latent variable:

$$y_{it}^* = \alpha_i + X_{it}\beta + u_{it}$$

Serially independent, exogenous logistic errors

$$u_{i1}, \cdots, u_{iT} | (X_{i1}, \cdots, X_{iT}), \alpha_i \sim iidLOG(0, 1)$$

• Link between latent and observed by cut points

$$y_{it} = \begin{cases} 1 & \text{if } y_{it}^* < \gamma_1 \\ 2 & \text{if } \gamma_1 \le y_{it}^* < \gamma_2 \\ \vdots & \vdots \\ J & \text{if } \gamma_{J-1} \le y_{it}^*. \end{cases}$$

Incidental parameters

For each category j,

$$P(y_{it} = j | X_{it}, \alpha_i) = \Lambda(\gamma_j - \alpha_i - X_{it}\beta) - \Lambda(\gamma_{j-1} - \alpha_i - X_{it}\beta),$$

where $\Lambda = \exp(x)/(1 + \exp(x))$. Likelihood is

$$\prod_{i=1}^n \prod_{t=1}^T \prod_{j=1}^J \left[\Lambda \left(\gamma_j - \alpha_i - X_{it} \beta \right) - \Lambda \left(\gamma_{j-1} - \alpha_i - X_{it} \beta \right) \right]^{1\{y_{it} = j\}}.$$

• Fixed T: maximum likelihood estimator (MLE) is inconsistent

Incidental parameters (logit)

 $\hat{\beta}_{ML}$: maximum likelihood estimator for T=J=2

- Inconsistent (Abrevaya, 1997)
 - $\hat{\beta}_{ML} \stackrel{p}{\to} 2\beta$ as $n \to \infty$
- Solution (Chamberlain, 1980)
 - $y_{i1} + y_{i2}$ is a sufficient statistic for α_i
 - conditional MLE (CMLE) with

$$P(y_i = (1,0)|y_{i1} + y_{i2} = 1, X_i, \alpha_i) = \frac{1}{1 + \exp((X_{i2} - X_{i1})\beta)}$$

is consistent

• Drawback: CMLE uses only switchers

Incidental parameters (Ordered logit)

- Solution for incidental parameters problem is model-specific
- No sufficient statistic (yet?) for ordered logit
- No exponential form:

$$P(y_{it} = j | X_{it}, \alpha_i) = \Lambda(\gamma_j - \alpha_i - X_{it}\beta) - \Lambda(\gamma_{j-1} - \alpha_i - X_{it}\beta)$$

Incidental parameters (Takeaway)

- Unobserved heterogeneity can cause inconsistency
- Solution exists for the case of binary logit
 - Solution uses only switchers
 - Does not extend to ordered logit model

Ordered choice

- Consider **ordered** choice with $y_{it} \in \{1, \dots, J\}$
- Dichotomization:
 - $\begin{array}{l} \bullet \ \ \mathsf{Pick} \ \mathsf{some} \ j \in \{1, \cdots, J-1\} \ \mathsf{and} \ \mathsf{define} \ \mathsf{the} \ \mathsf{binary} \ \mathsf{variable} \\ d_{it,j} = \begin{cases} 1 & \text{if} \ y_{it} \leq j, \\ 0 & \text{otherwise}. \end{cases}$
 - Apply Chamberlain's CMLE to y_{it,j}
- Consistent but inefficient:
 - Information is lost by discarding more precise measurement y_{it}
 - Winkelmann and Winkelmann (1998):
 - $\{0, \dots, 10\}$ collapsed to $\{0, 1\}$ by cutting at 7
 - Out of 10000 observations, only 2523 are switchers

Non-switcher: not informative

Switcher: informative

Time-invariant transformations do not catch flat patterns

Time-varying transformations catch flat patterns

There are $(J-1)^T \geq (J-1)$ time-varying transformations

Main result (notation)

- Cutoff categories $\pi_t \leq J 1$
- $\pi = (\pi_1, \cdots, \pi_T)$ is a transformation
- $d_{it,\pi} = 1\left\{y_{it} \leq \pi_t
 ight\}$ is the $\pi ext{-transformed}$ dependent variable
 - time series for unit $i: d_{i,\pi} \in \{0,1\}^T$
- $\bar{d}_{i,\pi} = \sum_{t} d_{it,\pi}$: number of times below cutoff
- ullet $F_{ar{d}}$ is the set of all binary T-vectors f with sum $ar{d}$

Main result

Theorem

If the random vector (y_i, X_i) follows the fixed effects ordered logit model, then for any transformation π , the conditional probability distribution of the π -transformed dependent variable $d_{i,\pi}$ is given by

$$p_{i,\pi}(d|\beta,\gamma) \equiv P(d_{i,\pi} = d|\bar{d}_{i,\pi} = \bar{d}, X_i, \alpha_i)$$

$$= \frac{1}{\sum_{f \in F_{\bar{d}}} \exp\left\{\sum_{t} (f_t - d_t) (\gamma_{\pi(t)} - X_{it}\beta)\right\}} (2)$$

for any $d \in \{0,1\}^T$.

Main result (remarks)

- 1. Conditional probability does not depend on α_i
- 2. Sufficient statistic exists for $(J-1)^T$ transformations of y_i
- 3. Existing approaches use **at most** (J-1) of those transformations

Main result (T = 2)

Evaluate the conditional probability for d = (1,0)

• For any time-invariant transformation:

$$\frac{1}{1+\exp\left\{-\left(X_{i2}-X_{i1}\right)\beta\right\}}$$

• For time-varying transformation $\pi=(j,k)$, $j\neq k$

$$\frac{1}{1+\exp\left\{\left(\gamma_{k}-\gamma_{j}\right)-\left(X_{i2}-X_{i1}\right)\beta\right\}}$$

Identification of $\gamma_k - \gamma_j$. Intuition: subpopulation with $X_{i2} = X_{i1}$

Outline

Introduction

Model and main result

Cut points

Estimation

Simulations and illustration

Conclusion

Cut points: binary

- Panel data binary choice (J=2):
 - no interpretation of the magnitude of β
 - evaluation of partial effects requires value/distribution α_i
- Existing estimators for ordered choice inherit this problem by eliminating thresholds
- Marginal effect of a ceteris paribus change in regressor m with coefficient β_m :

$$\frac{\partial P\left(y_{it} \leq j \mid X_{it}, \alpha_i\right)}{\partial X_{it,m}} = \beta_m \Lambda\left(\alpha_i + X_{it}\beta - \gamma_j\right) \left[1 - \Lambda\left(\alpha_i + X_{it}\beta - \gamma_j\right)\right]$$

Change in y_{it} for unit change in $X_{it,m}$?

If $y_{it}^* = \alpha_i + X_{it}\beta + u_{it} < -\beta_m$, then y_{it} is unchanged.

No marginal effects without info on α_i or $\alpha_i | X_{it}$.

Bounds (notation)

- Consider a ceteris paribus change in X_{it} of Δx
- The counterfactual latent dependent variable is

$$\tilde{y}_{it}^* = y_{it}^* + (\Delta x) \beta;$$

• \tilde{y}_{it} : the counterfactual ordered outcome.

Bounds

Conditional probability for the observed counterfactual outcome:

$$P\left(\left.\widetilde{y}_{it} > j\right| y_{it} = j, X_{it}\right) = \begin{cases} 1 \text{ if } \left(\Delta x\right)\beta > \gamma_{j} - \gamma_{j-1}, \\ 0 \text{ if } \left(\Delta x\right)\beta < 0, \\ \frac{F_{\nu}\left(\gamma_{j} - X_{it}\beta\right) - F_{\nu}\left(\gamma_{j} - \left(X_{it} + \Delta x\right)\beta\right)}{F_{\nu}\left(\gamma_{j} - X_{it}\beta\right) - F_{\nu}\left(\gamma_{j-1} - X_{it}\beta\right)} \quad \text{else} \end{cases}$$

Paper presents a more general result along the same lines. Note: intermediate category.

Bounds (2)

Using the first component:

• Minimum required change in X_{itm} to move everybody with $y_{it} = j$ up:

$$\delta_{m}^{j} \equiv \frac{\gamma_{j} - \gamma_{j-1}}{\beta_{m}}$$

• Let Δx_m be the ceteris paribus change in $X_{it,m}$, then

$$\Delta x_m > \delta_m^j \Rightarrow P(\tilde{y}_{it} > j | y_{it} = j, X_{it}) = 1$$

Outline

Introduction

Model and main result

Cut points

Estimation

Simulations and illustration

Conclusion

Estimation (one transformation)

- $\gamma_{\pi,\Delta}$ are the n_{π} cut point **differences** that show up
- $\theta_{\pi,0} = (\beta_0, \gamma_{\pi,\Delta,0})$: true **parameter** value

The **CMLE** for transformation π is

$$\hat{\theta}_{\pi} = \left(\hat{\beta}, \hat{\gamma}_{\pi, \Delta}\right) = \arg\max_{\mathbb{R}^K \times \mathbb{R}^{n_{\pi}}} \frac{1}{n} \sum_{i=1}^{n} 1\left\{d_{i} = d\right\} \ln p_{i\pi}\left(\left.d\right|\theta_{\pi}\right)$$

Estimation (one transformation)

Assumption

The variance matrix of the regressors, $Var \begin{pmatrix} X_{i1} \\ \vdots \\ X'_{iT} \end{pmatrix}$, exists and is positive definite.

Theorem

Let $(\{y_i,X_i\},\ i=1,\cdots,n)$ be a random sample from the fixed effects ordered logit model, and let π be an arbitrary transformation. If the above assumption holds, then $\hat{\theta}_{\pi}$ is consistent and

$$\sqrt{n}\left(\hat{\theta}_{\pi,n} - \theta_{\pi,0}\right) \stackrel{d}{\to} \mathcal{N}\left(0, H_{\pi}^{-1}\Sigma_{\pi}H_{\pi}^{-1}\right) \text{ as } n \to \infty,$$
 (3)

where H_{π} and Σ_{π} are the variance and expected derivative of (??).

Estimation (one transformation)

The **score**

$$egin{array}{lll} s_{i,\pi}\left(\left.d
ight| heta_{\pi}
ight) &=& \left[rac{\partial \ln
ho_{i,\pi}\left(\left.d
ight| heta_{\pi}
ight)}{\partial eta}
ight] \ &=& \left[rac{s_{i,\pi,eta}\left(eta,\gamma_{\pi,\Delta}
ight)}{\partial \gamma_{\pi,\Delta}}
ight] \ &=& \left[rac{s_{i,\pi,eta}\left(eta,\gamma_{\pi,\Delta}
ight)}{s_{i,\pi,\gamma}\left(eta,\gamma_{\pi,\Delta}
ight)}
ight] \end{array}$$

can be used to show global concavity

- Identification is guaranteed by condition on var(vec(X))
- Assumption are as for linear panel model

Estimation (more transformations)

CMLE is **equivalent** to solving the moment conditions

$$E\begin{bmatrix} s_{i,\pi,\beta} (\beta_0, \gamma_{\pi,\Delta,0}) \\ s_{i,\pi,\gamma} (\beta_0, \gamma_{\pi,\Delta,0}) \end{bmatrix} = 0.$$

GMM provides framework for combining information from multiple transformations.

Estimation (more transformations)

- For time-invariant transformations, $\gamma_{\pi,\Delta}$ is empty
- These are transformations used by existing procedures

Estimation (more transformations)

Time-invariant π .

• Combine moment conditions for β_0 :

$$E[s_{i,1,\beta}(\beta_0)] = E\begin{bmatrix} s_{i,(1,\dots,1)}(\beta_0) \\ \vdots \\ s_{i,(J-1,\dots,J-1)}(\beta_0) \end{bmatrix} = 0$$
 (4)

GMM estimator based on (4) is

$$\tilde{\beta}_{W_{1},n} = \arg\min \bar{s}_{1,n} \left(\beta\right)' W_{1,n} \bar{s}_{1,n} \left(\beta\right)$$

where
$$\bar{s}_{1,n}(\beta) = \frac{1}{n} \sum_{i=1}^{n} s_{i,1,\beta}(\beta)$$

- Existing procedure corresponds to choice for $W_{1,n}$
- $\tilde{\beta}^*$ is **optimal** estimator in this class

Estimation (even more transformations)

Main result: $(J-1)^T - (J-1)$ additional, time-varying transformations

- Scores involve n_{γ} cut point differences $\gamma_{\Delta} = (\gamma_{\pi,\Delta})_{\pi}$
- Collect the scores for γ_{Δ} in the $n_{\gamma} imes 1$ vector

$$s_{i,2,\gamma}(\beta,\gamma_{\Delta})=(s_{i,\pi,\gamma}(\beta,\gamma_{\pi,\Delta}), \pi:n_{\pi}\geq 1)$$

• Scores for β from **time-varying** π :

$$s_{i,2,\beta}(\beta,\gamma_{\Delta})=\left(s_{i,\pi,\beta}(\beta,\gamma_{\pi,\Delta}), \pi: n_{\pi}\geq 1\right)$$

Estimation (even more π s)

Proposal: estimation using

$$E\left[s_{i}\left(\beta_{0},\gamma_{\Delta,0}\right)\right] = E\left[\begin{matrix}s_{i,1,\beta}\left(\beta_{0}\right)\\s_{i,2,\beta}\left(\beta_{0},\gamma_{\Delta,0}\right)\\s_{i,2,\gamma}\left(\beta_{0},\gamma_{\Delta,0}\right)\end{matrix}\right] = 0$$

- Optimal estimator in this class: $\left(\hat{eta}^*,\hat{\gamma}^*_\Delta\right)$
- **Question**: Is $\hat{\beta}^*$ more efficient than $\tilde{\beta}^*$?

Efficiency (result)

Theorem

Let $(\{y_i, X_i\}, i = 1, \dots, n)$ be a random sample from [...] Then, as $n \to \infty$,

$$\begin{array}{ccc} \sqrt{n}\left(\tilde{\beta}^*-\beta_0\right) & \stackrel{d}{\to} & \mathcal{N}\left(0,V_1\right), \\ \sqrt{n}\left(\left(\begin{array}{c} \hat{\beta}^* \\ \hat{\gamma}^*_{\Delta} \end{array}\right) - \left(\begin{array}{c} \beta_0 \\ \gamma_{\Delta,0} \end{array}\right)\right) & \stackrel{d}{\to} & \mathcal{N}\left(0,V\right), \end{array}$$

where [...]. Furthermore, let V_{β} be the top-left $K \times K$ block of V. Then $V_1 - V_{\beta}$ is positive semidefinite.

Efficiency (proof sketch)

• $\left(\hat{\beta}^*,\hat{\gamma}^*_{\Delta}\right)$ is based on

$$E\begin{bmatrix} s_{i,1,\beta}\left(\beta_{0}\right) \\ s_{i,2,\beta}\left(\beta_{0},\gamma_{\Delta,0}\right) \\ s_{i,2,\gamma}\left(\beta_{0},\gamma_{\Delta,0}\right) \end{bmatrix}$$

- Information from $s_{i,2,\gamma}(\beta_0,\gamma_{\Delta,0})$ exactly identifies $\gamma_{\Delta,0}$
- β -estimation based on $s_{i,1,\beta}(\beta_0)$ is **unaffected** by adding $s_{i,2,\gamma}(\beta_0,\gamma_{\Delta,0})$
- $s_{i,2,\beta}\left(\beta_0,\gamma_{\Delta,0}\right)$ yields efficiency gains for β_0

Efficiency (OMD)

The efficient minimum distance estimator based on all $\hat{\beta}_{\pi}$ is asymptotically equivalent to the optimal GMM estimator $\hat{\beta}^*$

Outline

Introduction

Model and main result

Cut points

Estimation

Simulations and illustration

Conclusion

Implementation

- Stata's **clogit** command implements $\hat{\theta}_{\pi}$
 - \bullet augment regressors with indicator for π
- Apply **clogit** for each π
- Optimally combine the results using suest

Simulations

$$J = 3, K = 1, T = 2, N = 5000$$

	ļ.	3	γ_2 -	$\gamma_2 - \gamma_1$		
Estimator	%Bias	ReISD	%Bias	RelSD		
Oracle	0.0	1.00	0.03	1.00		
CSLogit	14.2	0.93	6.29	0.95		
$\pi=(1,1)$	0.0	1.89	-	-		
$\pi = (2, 2)$	0.2	2.28	-	-		
$\pi=(1,2)$	0.3	4.09	0.18	3.30		
$\pi = (2, 1)$	0.2	1.90	0.28	3.70		
DvS	0.6	1.52	-	-		
OMD	0.8	1.35	0.13	1.51		

Simulations (sensitivity)

	J=3	R, K = 3)	(J = 3,	K=5)	(J = 5,	K=5	
Estimator	%Bias	RelSD	%Bias	RelSD	%Bias	RelSD	
Coefficient	Coefficient β						
$\pi=(1,1)$	0.17	1.78	0.90	1.70	0.90	1.80	
$\pi=(1,2)$	0.30	1.49	0.80	1.33	0.80	1.40	
DvS	0.03	1.43	0.61	1.36	0.41	1.37	
OMD	0.24	1.22	0.01	1.16	1.69	1.28	
Cut point $\gamma_2 - \gamma_1$							
$\pi=(1,2)$	0.47	4.20	0.57	5.02	0.57	5.03	
$\pi = (2,1)$	0.69	11.01	2.02	14.17	2.02	14.95	
OMD	0.21	1.42	0.50	1.40	1.76	1.40	

Simulations: many- π bias

- Estimation of weight matrix affects small samples
- Proposal: composite likelihood estimator (CLE)

$$\hat{\theta}_{CLE} = \operatorname{arg\,max} \sum_{\pi} \sum_{i=1}^{n} 1\left\{d_{i} = d\right\} \ln p_{i\pi} \left(\left.d\right| \theta_{\pi}\right)$$

- sacrifices efficiency
- robust finite-sample performance (large J, T)
- even easier to implement in Stata (expand + clogit)

Simulations: many π results

Other parameters unchanged

-	T=4		T =	<i>T</i> = 6		<i>T</i> = 8	
Estimator	%Bias	ReISD	%Bias	ReISD	%Bias	RelSD	
Oracle	1.29	1.00	0.38	1.00	1.17	1.00	
$\pi=(1,1)$	2.45	1.57	0.59	1.48	1.70	1.46	
BUC	1.64	1.18	0.16	1.15	1.14	1.10	
DvS	1.30	1.20	0.00	1.13	0.99	1.09	
CLE	1.87	1.15	0.20	1.10	1.05	1.07	
OMD	1.90	1.20	10.70	1.18	18.85	1.21	

Family income and children's health

- Relationship between reported (subjective) children's health status and total household income
- Seminal paper: Case et al. (2002)
 - 1. children's health is positively related to household income
 - 2. relationship is stronger for older children.
- Currie and Stabile (2003) replicate using Canadian panel
- Murasko (2008) replicates using Medical Expenditure Panel Survey (MEPS)
- Currie et al. (2007) use British data:
 - confirm finding #1
 - no evidence for #2
- Khanam et al. (2014) use Australian data
 - first to control for unobserved heterogeneity
 - no evidence for #2

Illustration (data)

- Data: Panel 16 of the Medical Expenditure Panel Survey (MEPS). US data.
 - MEPS is a rotating panel (Agency for Healthcare Research Quality, 1996)
 - Demographic and socioeconomic variables (survey)
 - Data on health and healthcare usage (admin)
- 4131 children in 2011 and 2012.
- Dependent variable: self-reported health status (RTHLTH)
 - "1" = "Poor" "5" = "Excellent".
- Explanatory variables (de-meaned)
 - total household income
 - interaction age and income.
 - · year dummies, family size

Illustration: results

	RE	CRE	BUC	CLE
$log(Income)_{it}$	-0.38	-0.10	-0.09	-0.06
	(0.03)	(0.06)	(0.07)	(80.0)
$Age \times log(Income)_{it}$	-0.014	0.017	0.021	0.035
	(0.007)	(0.013)	(0.015)	(0.016)
Family size	0.09	-0.19	-0.20	-0.23
	(0.04)	(0.14)	(0.15)	(0.16)
$\gamma_2 - \gamma_1$	2.01	2.02	-	1.87
	(0.05)	(0.05)		(0.05)
$\gamma_3-\gamma_2$	2.96	2.97	-	2.92
	(0.09)	(0.09)		(0.12)
$\gamma_4-\gamma_3$	2.73	2.74	-	2.61
	(0.23)	(0.23)		(0.29)

Illustration: discussion (1)

- Controlling for unobserved heterogeneity is important
- Not enough evidence for income effect at average age
- Sufficient evidence for age-dependent income-health effect
 - CLE is the only estimator to detect it.

Illustration: discussion (2)

- BUC: no cut points
- CLE: income increase > 900% to move a 15-year old from Fair to Good or higher.
- Correlated random effects (CRE):
 - close to correctly specified
 - standard errors are only slightly smaller
 - 100% income increase changes probability of "Good" or above from 0.1415 to 0.1447

Outline

Introduction

Model and main result

Cut points

Estimation

Simulations and illustration

Conclusion

Conclusion

Estimation for fixed effects ordered logit model

- Using $(J-1)^T$ fixed effects binary choice logit models
- Cut point differences for bounds on partial effects
- Regression coefficient: increased efficiency

Extensions

- 1. Better bounds
- 2. Other panel data models
 - 2.1 transformation model
 - 2.2 interval-censored model
- 3. Semiparametric ordered choice
- 4. Dynamic ordered choice
- 5. Time-varying cut points