

Global warming and local dimming: the statistical evidence

Chris Muris

Joint work with

Jan Magnus

Bertrand Melenberg

ETH Zürich October 15, 2010

Introduction

Warming and CO2

Potential other causes

Dimming

Motivation

Goal

Outline

Climate modelling

Data

Econometric model

Results

Conclusions

Introduction

Figure 1: Temperature and carbon dioxide concentration

Potential other causes

Figure 2: Alternative drivers of temperature. Source: IPCC (2007)

Figure 3: Solar radiation over time

Due to measures that target the adverse health effects of aerosols, and acid rain.

- Andreae et al., "Strong present-day aerosol cooling implies hot future" (*Nature*, 30 June 2005)
- Arneth et al., "Clean the air, heat the planet" (Science, 30 October 2009)

- Uncertainty about the magnitude of dimming...
- ... has a potentially large effect on projected temperature ...
- ... and is therefore important in assessing environmental policy.

Figure 4: Temperature. Source: Wild et al. (2007)

- How much temperature increase due to warming?
- How much temperature decrease due to dimming?

1. Modelling the climate system

2. Data

3. Econometric model: dynamic panel data

4. Results

1. Modelling the climate system

2. Data

3. Econometric model: dynamic panel data

4. Results (dimming offsets more than 50% of warming!)

TILBURG • UNIVERSITY

Introduction

Climate modelling

Modelling approaches

GCM

Climate model (1):

Longwave and

shortwave radiation

Climate model (2):

Energy balance surface

Energy balance

Data needs

Data

Econometric model

Results

Conclusions

Climate modelling

Statistics: no integrated approach that incorporates dimming

 Optimal fingerprinting: matching GCM simulations to data (e.g. Stott et al., 2006)

Our approach: simple climate model + extensive statistical analysis.
No GCM

■ GCM: parameter in, "data" out.

Parameter by guess, expertise, calibration.

- Our approach: data in, parameter estimate out.
- Advantage:
 - parameter uncertainty quantified
 - no identification problem
- Cost: simplified climate model

Climate model (1): Longwave and shortwave radiation

Figure 5: An energy balance model. Based on Trenberth et al. (2009)

Climate model (2): Energy balance surface

Figure 6: An energy balance model. Based on Trenberth et al. (2009)

Equilibrium model:

■ Global balance: Outgoing energy = Incoming energy

- Temperature restores balance: $c\Delta \mathsf{TEMP} = \mathsf{Incoming} \mathsf{Outgoing}$
 - Mechanism: surplus energy increases future temperature;
 higher temperature increases the amount of outgoing energy
 - ◆ c converts energy to temperature

■ Local: $c\Delta TEMP = Incoming - Outgoing + Exchange$

- Incoming, blue, left: RAD, Solar radiation
- Incoming, blue, right: Concentration of greenhouse gases, as represented by CO2 (carbon dioxide)
- Outgoing: TEMP, Temperature
- Exchange: TEMP and average temperature

Introduction

Climate modelling

Data

Construction (1)

Construction (2)

Construction (3)

Aggregated data plots

3D plots

Econometric model

Results

Conclusions

Data

Construction (1)

- One temperature measurement for every grid cell
- Annual data for 1959-2002 CHOOL OF ECONOMICS AND MANAGEMENT

Construction (2)

- 1337 weather stations
- Unbalanced panel of \$18000 data points and Management

Construction (3)

Carbon dioxide concentration is everywhere the same

Figure 7: Data, (aggregated to) global means

■ Interpolation using polynomial of order 4

Figure 8: TEMP and RAD at the weather station level

Introduction

Climate modelling

Data

Econometric model

Translating from climate

model

Rewriting...

Estimation

Results

Conclusions

Econometric model

Translating from climate model

$$\begin{split} c\Delta\mathsf{TEMP}_{it} &= \mathsf{Incoming} - \mathsf{Outgoing} + \mathsf{Exchange} \\ &= \mathsf{from} \ \mathsf{Sun} + \mathsf{greenhouse} - \mathsf{outgoing} + \mathsf{exchange} \\ &= a_0 + a_1 \overline{\mathsf{RAD}}_t + a_2 (\mathsf{RAD}_{it} - \overline{\mathsf{RAD}}_t) \\ &\quad + b_0 + b_1 \log(\mathsf{CO2}_t) \\ &\quad - (c_0 + c_1 \overline{\mathsf{TEMP}}_t + c_2 (\mathsf{TEMP}_{it} - \overline{\mathsf{TEMP}}_t)) \\ &\quad + d_0 - d_1 (\mathsf{TEMP}_{it} - \overline{\mathsf{TEMP}}_t) \end{split}$$

 $\overline{\mathsf{RAD}}_t$ is average radiation

Reduced form:

$$\mathsf{TEMP}_{i,t+1} = \beta_1 \mathsf{TEMP}_{it} + \beta_2 \mathsf{RAD}_{it} + \lambda_t + \varepsilon_{it} \tag{1}$$

$$\lambda_t = \gamma_0 + \gamma_1 \overline{\mathsf{TEMP}}_t + \gamma_2 \overline{\mathsf{RAD}}_t + \gamma_3 \log(\mathsf{CO2}_t) + \mathbf{v_t} \tag{2}$$

- Error terms allow for flexibility, absorb part of latent and sensible heat
- Estimates of the reduced form parameters are sufficient

Estimation...

Linear trend estimation:

$$y_t = \beta_0 + \beta_1 t + u_t.$$

Allows parameter β_1 and its uncertainty to be estimated.

Same here, but more complicated.

Introduction

Climate modelling

Data

Econometric model

Results

+5) Coefficients

Effects: definition

Effects: estimates

ECS

Policy (1)

Policy (2)

Conclusions

Results

TEMP $_{it}$ (eta_1)	$RAD_{it}\ (eta_2)$	$\overline{TEMP}_t\ (\gamma_1)$	\overline{RAD}_t (γ_2)	$\log CO2_t$ (γ_3)
0.9063	0.0087	-0.8235	0.0614	10.6955
(0.0046)	(8000.0)	(0.1839)	(0.0219)	(2.3958)

Table 1: Coefficient estimates

Effects: definition

Figure 9: Results in terms of different scenarios

- black minus red: dimming
- black minus green: warming

We find:

■ Dimming: -1.09 °C (0.28)

■ Warming: $1.87 \, ^{\circ}$ C (0.29)

■ Warming offset by dimming: 58%

- Point estimate is 5.30
- 95%-confidence interval: (3.48, 7.12)

■ Solomon et al (2007): (2.38, 5.14)

ightharpoonup > 2 $^{\circ}$ C temperature increase is catastrophic

■ Can this be avoided?

Figure 10: Iso-radiation curves

■ If the current trend in dimming persists, greenhouse gas concentrations need to return to their 2000 levels to avoid catastrophe

Introduction

Climate modelling

Data

Econometric model

Results

Conclusions

Conclusions

- +4) Sensitivity analysis
- +6) Emissions policy
- +7) Emissions policy (2)

Conclusions

■ We detect a greenhouse effect and a radiation effect

More action required to avoid dangerous climate change

■ Findings robust to model changes

■ Completely new approach, comparable results

Many challenging improvements possible: modelling ocean, slower processes, strongly absorbing aerosols

+4) Sensitivity analysis

	Method		Radiation	Greenhouse
1	Benchmark		-1.09 (0.31)	1.87 (0.32)
2a	Water vapor	Exogenous	-1.41 (0.84)	2.68 (1.45)
2b		Endogenous	-1.22(0.87)	2.56 (1.63)
3	Cloud cover		-0.58(0.37)	1.35 (0.43)
4	Albedo		-0.92(0.34)	2.34 (0.41)
5	Different sample period		-0.61 (0.71)	1.27 (0.78)
6	Smoothing		-0.99 (0.29)	1.94 (0.33)
7	Definition of TEMP		-1.16 (0.25)	1.78 (0.24)
8	Weights		-1.43(0.28)	1.71 (0.25)
9a	Lags	Two lags	-1.05(0.31)	1.84 (0.32)
9b		Four lags	-1.08(0.31)	1.88 (0.32)
10	Arellano-Bond		-0.78 (0.29)	1.73 (0.30)
11	One round		-0.07(0.03)	1.08 (0.03)

Table 2: Sensitivity analysis: radiation and greenhouse effects

+6) Emissions policy

Link emissions to concentrations

$$\Delta \text{CO2}_t \approx 0.0213 - 0.0077 \text{CO2}_{t-1} + 0.0038 \text{Emissions}_t$$

■ Carbon dioxide concentrations converge slowly: abrupt emission changes have effects in the future, not now

+7) Emissions policy (2)

Figure 11: Emissions policies and effect on concentrations

- With brightening, we need to reduce emissions to pre-1980 levels to avoid
 - $> 2~^{\circ}\mathrm{C}$ warming to avoid catastrophe

