Covariate Selection and Model Averaging in Semiparametric Estimation of Treatment Effects

> Toru Kitagawa (University College London), Chris Muris (Simon Fraser University)

> > ・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

01. Setting

- A random sample of measurements on individuals is available
- Some individuals were affected by a program
- Selection into treatment on observables
- ► Focus: average treatment effect for the treated (ATT)
- Estimation using a propensity-score weighting estimator
 - these estimators are very common in empirical practice
 - simulation evidence suggests excellent performance (Busso, DiNardo, McCrary; REStat, 2011)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

02. Problem

How to choose the covariates that enter the propensity score?

- 1. Which variables X to choose?
- 2. Which functions of X to include?
- There may be a bias-variance tradeoff
 - leaving out relevant covariates: omitted variable bias
 - including redundant variables: increases variance
 - Intuition: if there are many regressors, we may not want to use all of them

うして ふゆう ふほう ふほう うらつ

- Common practice: "put everything in"
- Which selection of covariates/functional form is optimal?

03. Contribution

- 1. We show that a bias-variance tradeoff exists
- 2. We propose a **data-driven** way of **selecting** regressors for the propensity score (model selection),
 - based on minimizing the estimated mean squared error
- 3. We propose an **optimal** way of averaging over candidate specifications (model averaging)
- Averaging estimator outperforms "put-everything-in" by up to 25-30% (MSE, simulations)

うして ふゆう ふほう ふほう うらつ

04. Motivation: Treatment effects

- Effect of motherhood on wages
 - Simonsen and Skipper (JAE, 2006)
 - 29027 observations, 172 covariates
- Development project aid money on rural rehabilitation projects
 - van de Walle and Mu (JDE, 2007)
 - ▶ 194 observations, 35 covariates
- Effect of CEO awards on firm productivity
 - Malmendier and Tate (QJE, 2009)
 - ▶ 71418 observations, 100's of covariates
- ► Hirano, Imbens, and Ridder (ECTA, 2003):
 - **series** estimator is efficient
 - In practice, researcher must choose number of terms

05. Model: potential outcomes

- {(Y_i, D_i, X_i), i = 1, · · · , n} is a random sample of size n. treatment indicator D_i ∈ {0,1}; scalar outcome Y_i; vector of covariates X_i = (X_{i1}, · · · , X_{iL});
- ► Potential outcomes $(Y_i(1), Y_i(0))$, so that $Y_i = \begin{cases} Y_i(1) & \text{if } D_i = 1 \\ Y_i(0) & \text{if } D_i = 0 \end{cases}$
- ► Assumption 1: Unconfoundedness. $(Y_i(1), Y_i(0)) \perp D_i | X_i$
- ▶ Assumption 2: Propensity score. For a known vector $W_i \equiv W(X_i) \in \mathbb{R}^K$ of linearly independent functions of X_i , there exist a unique $\gamma_0 \in \mathbb{R}^K$ such that $P(D_i = 1 | X_i) = G(W'_i \gamma_0)$ for a known link function $G(\cdot)$
- ► Assumption 3: Strict overlap. There exists an $\epsilon > 0$ such that $G\left(W(x)'\gamma_0\right) \le \epsilon < 1$ for all values of $x \in \text{supp}(X_i)$

06. Estimation: Normalized propensity weights

- Step 1: Estimate propensity score parameter $\hat{\gamma}$, by ML

► Step 2:

$$\hat{\tau}_{NPW} = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{D_i Y_i}{\sum_{i=1}^{n} D_i / n} - \frac{\frac{G(W_i' \hat{\gamma})(1 - D_i)}{(1 - G(W_i' \hat{\gamma}))} Y_i}{\sum_{i=1}^{n} \frac{G(W_i' \hat{\gamma})(1 - D_i)}{(1 - G(W_i' \hat{\gamma}))} / n} \right]$$

• Alternatively, use only a subset of covariates $W_{S,i} \subset W_i$

$$\hat{\tau}_{S} = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{D_{i}Y_{i}}{\frac{1}{n} \sum_{i=1}^{n} D_{i}} - \frac{\frac{G(W_{S,i}^{'}\hat{\gamma}_{S})(1-D_{i})}{(1-G(W_{S,i}^{'}\hat{\gamma}_{S}))}Y_{i}}{\frac{1}{n} \sum_{i=1}^{n} \frac{G(W_{S,i}^{'}\hat{\gamma}_{S})(1-D_{i})}{(1-G(W_{S,i}^{'}\hat{\gamma}_{S}))}} \right],$$

Leads to collection of estimators

$$\{\hat{\tau}_{S,NPW}\}_{S}$$

◆□ → ◆圖 → ◆臣 → ◆臣 → ○ ● ● ● ● ●

07. Local misspecification: motivation

- Standard asymptotics: no bias-variance tradeoff
- ▶ For the full model estimator, $\sqrt{n} (\hat{\tau}_{NPW} \tau_0) \rightarrow \mathcal{N} (0, \omega_{NPW}^2)$
- ► For any subset estimator, $\sqrt{n} (\hat{\tau}_S \tau_S) \rightarrow \mathcal{N} (0, \omega_S^2)$, where $\tau_S = \text{plim} (\hat{\tau}_S) \neq \tau_0$
- Then

$$\sqrt{n} \left(\hat{\tau}_{S} - \tau_{0} \right) = \sqrt{n} \left(\hat{\tau}_{S} - \tau_{S} \right) + \sqrt{n} \left(\tau_{S} - \tau_{0} \right)$$

$$\rightarrow \mathcal{N} \left(0, \omega_{S}^{2} \right) \pm \infty$$

うして ふゆう ふほう ふほう うらつ

Asymptotically, we always prefer the big model.
 Counterintuitive.

08. Asymptotic distribution $\hat{\tau}_S$

$$\begin{split} \sqrt{n}(\hat{\tau}_{S} - \tau_{0}) &\to \mathcal{N}(0, \omega_{S}^{2}) + \text{bias}_{S}, \\ \omega_{S}^{2} &= \frac{1}{Q^{2}} E\left[L^{2}\left(\left(D_{i} - G_{i}\right)\frac{1 - 2G_{i}}{1 - G_{i}}\left(\mu_{0}\left(X_{i}\right) - \alpha_{0}\right)\middle|h_{S}\right)\right] + \\ \text{bias}_{S} &= \frac{1}{Q} E\left[L^{\perp}\left(\frac{D_{i} - G_{i}}{1 - G_{i}}\left(\mu_{0}\left(X_{i}\right) - \alpha_{0}\right)\middle|h_{S}\right)h_{S^{c}}'\right]\delta_{S^{c}} \end{split}$$

Notation

•
$$G_i = G\left(W'_i\gamma_0\right), \mu_0\left(X_i\right) = E\left(Y_i(0)|X_i\right), \alpha_0 = E\left(Y_i(0)|D_i=1\right)$$

• $h_S = \frac{(D_i - G_i)G_i}{G_i(1 - G_i)}W_{S,i}$ and $L\left(\cdot|\cdot\right)$ is a projection,
• S^C is an index for the regressors not in S, e.g. $W_Sc_{,i} = W_i \setminus W_{S,i}$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣 の�?

09. Model selection: FIC

- We have a collection $\{\hat{\tau}_S\}$ of estimators
- ▶ We want to select the estimator with the lowest MSE
- Not feasible: MSE must be estimated
- Focussed information criterion (FIC) approach (Claeskens/Hjort, JASA, 2003; CUP, 2008):
 - Assume that the full model is correctly specified
 - Focus is on τ_0 , γ is a nuisance parameter
 - FIC: an unbiased estimate of $MSE(\hat{\tau}_{S})$ for each estimator

うして ふゆう ふほう ふほう うらつ

Select estimator with the lowest FIC

10. Model selection: MSE estimation

• Mean squared error for $\hat{\tau}_S$ can be written

$$\mathsf{MSE}_{S} = \omega_{S}^{2} + b_{S}^{'} \delta_{S^{c}} \delta_{S^{c}}^{'} b_{S}$$

- ► Consistent estimators for ω²_S and b[']_S are available from full model estimation
- **Problem:** No consistent estimator for $\delta = \sqrt{n} (\gamma_n \gamma_0)$
- For example, consider $\hat{\delta} = \sqrt{n} \left(\hat{\gamma} \gamma_0 \right) \rightarrow \mathcal{N} \left(\delta, V \right)$
- \blacktriangleright $\hat{\delta}$ is **unbiased** but not consistent
- For MSE, we are interested in $\delta\delta'$. Use: $\widehat{\delta\delta'} = \hat{\delta}\hat{\delta}' \hat{V}$
- Now, all ingredients for FIC model selection are available

うしつ 山 (山) (山) (山) (山) (山) (山) (山)

Model selection: overview

- 1. Specify a largest model by choosing W_i
- 2. Specify which submodels S are considered
- 3. Obtain the NPW estimator using the full set of covariates
 - Also provides $\hat{\omega}_{S}^{2}$, \hat{b}_{S} for each submodel S, and $\widehat{\delta\delta'}$

(日) (伊) (日) (日) (日) (0) (0)

4. For each estimator, compute $FIC(S) = \widehat{MSE}_{S} = \hat{\omega}_{S}^{2} + \hat{b}_{S}' \widehat{\delta_{S^{c}} \delta_{S^{c}}'} \hat{b}_{S}'$

- 5. Choose the estimator with minimum FIC(S)
- 6. This is the FIC selection estimator for ATT

11. Model averaging

- Model selection estimators are "discontinuous" in $\hat{\delta}$
- An alternative is to consider model averaging estimators

$$\hat{\tau}_{avg} = \sum_{S} c_{S}\left(\hat{\delta}\right) \hat{\tau}_{S}, \sum_{S} c_{S}\left(\hat{\delta}\right) = 1$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Model selection: $c_S = \begin{cases} 1 & \text{if } FIC(S) \text{ is minimized at } S \\ 0 & \text{if not} \end{cases}$

► Alternative: assign smooth weights, e.g. $c_S = \frac{FIC^{-1}(S)}{\sum_S FIC^{-1}(S)}$

12. Optimal averaging

The distribution of the averaging estimator is given by

$$\sqrt{n}(\hat{\tau}_{avg}-\tau_n)=\sum_{S}c_{S}\left(\hat{\delta}\right)\sqrt{n}(\hat{\tau}_{S}-\tau_n)$$

The MSE converges to

$$MSE(\hat{ au}_{avg})
ightarrow E_{\hat{\delta}|\delta} \left[c(\hat{\delta})' \mathcal{K}(\hat{\delta}, \delta) c(\hat{\delta})
ight],$$

with $c(\hat{\delta})$ the vector of weights, $\hat{\delta} \sim \mathcal{N}(\delta, \Sigma_{\delta})$, and
 $\mathcal{K}(\hat{\delta}, \delta) = V + (A_1 \delta + A_2 \hat{\delta})(A_1 \delta + A_2 \hat{\delta})'$

• MSE-minimizer not feasible: depends on the true value of δ

13. Optimal averaging: Statistical decision

We propose to use weights that solve

$$c^*\left(\hat{\delta}
ight) = \arg\min_{c(\cdot)} \int_{\delta} E_{\hat{\delta}|\delta}\left[c(\hat{\delta})'K(\hat{\delta},\delta)c(\hat{\delta})
ight] d\mu(\delta)$$

where $\mu(\delta)$ is a prior on δ **Proposition**:

Let $\mu(\delta)$ be a proper prior, and assume that $K_{post}(\hat{\delta}) = E_{\delta|\hat{\delta}}(K(\hat{\delta}, \delta))$ is nonsingular. Then

$$c^*(\hat{\delta}) = rac{1}{\iota' \mathcal{K}_{post}(\hat{\delta}) \iota} \mathcal{K}_{post}(\hat{\delta}) \iota.$$

うして ふゆう ふほう ふほう うらつ

14. Toy model: setup

• X_i is binary covariate, with $P(X_i = 1) = 0.5$

• If
$$D_i = 1$$
, then $Y_i = 1$

•
$$P(D = 1|X = 0) = 0.4, P(D = 1|X = 1) = \gamma_1$$

•
$$E(Y_i|D=0,X=1)=\mu_Y$$
 and variance σ_Y^2

In this model, the expression for the ATE and ATT are straightforward:

$$ATE = -p_X \mu_Y$$

$$ATT = -P(X = 1|D = 1)\mu_Y$$

- 1. Estimator 1: No covariates: $\hat{\tau}_0 = \frac{1}{n} \sum_i D_i Y_i$
- 2. Estimator 2: Include covariate: $\hat{ au}_f = -\hat{q}_1\hat{\mu}_Y$

15. Toy model: results

MSE for the estimator with covariate (black), the estimator without covariate (red), and the averaging estimator (blue). Dotted lines are asymptotic approximations, solid lines are simulation results.

Simulation model

Model for simulations:

$$\begin{split} \mathcal{P}(\,D_i = 1|\,X_i) &= \Lambda(\gamma_0 + X_i^{'}\gamma), \\ Y_i(0) &= \beta_{00} + X_i^{'}\beta_0 + u_{0i}, \\ Y_i(1) &= \beta_{10} + X_i^{'}\beta_1 + u_{1i}, \\ u_{ji}|\,X_i &\sim N\left(0,\sigma_j^2\right), \, j \in \{0,1\}\,, \\ X_i &\sim \mathcal{N}_K\left(0_K\,,\,cI_K + (1-c)\iota_K\iota_K^{'}\right). \end{split}$$

- Logit link, normality for regressors and disturbances, linear outcome equations
- Note: simulation results do not depend on the local misspecification framework

Benchmark values

Parameter	Value	Interpretation
п	300	Moderate sample size
K	4	4 regressors
с	0.7	$Corr(X_1, X_2) = 0.3$
$\gamma_1 = \beta_{11}$	1	X_1 is the important regressors
$\gamma_k, \ k > 1$	0.1	Other regressors are less important
$\beta_{1,k}, \ k>1$	k/10	Heterogeneous treatment effects
β_0	0	$Y_{i}\left(0\right)=u_{0i}$
γ_{0}, β_{10}	1; 1	-
$\sigma_{\rm 0}=\sigma_1$	0.1	-
Reps	9000	9000 Monte Carlo reps
BS reps	1000	1000 bootstrap reps for $\hat{\Omega}$ $2^{\mathcal{K}-1}$ submodels

Table : Parameter values for the benchmark simulations.

Benchmark results

	All submodels		
Estimator	Bias	Var	MSE
{ <i>X</i> ₁ }	6.29	3.63	4.02
$\{X_1, X_2\}$	4.48	3.80	4.00
$\{X_1, X_2, X_3\}$	3.33	3.97	4.08
$\{X_1, X_2, X_3, X_4\}$	2.50	4.11	4.17
:	÷	÷	÷
$\{X_2, X_3, X_4\}$	72.79	1.66	54.64
Best submodel	4.44	3.80	4.00
Selection	4.24	3.72	3.90
Bayes	4.84	2.78	3.01
$_{ m HC}$	5.54	3.35	3.66
invFIC	6.88	3.06	3.53
Relative efficiency		72%	

Table : All values were multiplied by $100 \rightarrow 4 \equiv 5 \rightarrow 4 \equiv 5 \rightarrow 2 = 50 \circ 100$

16. Application: National Supported Work Demonstration

- We apply the estimators to Lalonde (AER, 1986) and Dehejia and Wahba (JASA, 1999)
- Effect of a labor market training on post-program earnings
- **Experimental** results (dotted vertical line): \$1631 (sd: 637)
- Lalonde: results cannot be replicated with regression methods and PSID/CPS
- > DW: results can be replicated, using propensity score methods

Our results (triangle): more precise, closer to experimental

17. Application: Results

Dots represent individual submodel estimates. The dotted line represents the experimental estimate and its standard error. The **solid line** represents our **averaging** estimate.