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01. Setting

I A random sample of measurements on individuals is available

I Some individuals were a�ected by a program

I Selection into treatment on observables

I Focus: average treatment e�ect for the treated (ATT)

I Estimation using a propensity-score weighting estimator

I these estimators are very common in empirical practice
I simulation evidence suggests excellent performance (Busso,

DiNardo, McCrary; REStat, 2011)



02. Problem

I How to choose the covariates that enter the propensity score?

1. Which variables X to choose?
2. Which functions of X to include?

I There may be a bias-variance tradeo�

I leaving out relevant covariates: omitted variable bias
I including redundant variables: increases variance
I Intuition: if there are many regressors, we may not want to

use all of them

I Common practice: �put everything in�

I Which selection of covariates/functional form is optimal?



03. Contribution

1. We show that a bias-variance tradeo� exists

2. We propose a data-driven way of selecting regressors for the
propensity score (model selection),

I based on minimizing the estimated mean squared error

3. We propose an optimal way of averaging over candidate
speci�cations (model averaging)

4. Averaging estimator outperforms �put-everything-in� by up to
25-30% (MSE, simulations)



04. Motivation: Treatment e�ects

I E�ect of motherhood on wages

I Simonsen and Skipper (JAE, 2006)
I 29027 observations, 172 covariates

I Development project aid money on rural rehabilitation projects

I van de Walle and Mu (JDE, 2007)
I 194 observations, 35 covariates

I E�ect of CEO awards on �rm productivity

I Malmendier and Tate (QJE, 2009)
I 71418 observations, 100's of covariates

I Hirano, Imbens, and Ridder (ECTA, 2003):

I series estimator is e�cient
I In practice, researcher must choose number of terms



05. Model: potential outcomes

I {(Yi ,Di ,Xi ) , i = 1, · · · , n} is a random sample of size n.
treatment indicator Di ∈ {0, 1}; scalar outcome Yi ; vector
of covariates Xi = (Xi1, · · · ,XiL);

I Potential outcomes (Yi (1) ,Yi (0)) , so that

Yi =

{
Yi (1) if Di = 1

Yi (0) if Di = 0

I Assumption 1: Unconfoundedness.
(Yi (1) ,Yi (0)) ⊥ Di |Xi

I Assumption 2: Propensity score. For a known vector
Wi ≡W (Xi ) ∈ RK of linearly independent functions of Xi ,
there exist a unique γ0 ∈ RK such that

P (Di = 1|Xi ) = G
(
W
′
i γ0

)
for a known link function G (·)

I Assumption 3: Strict overlap. There exists an ε > 0 such

that G
(
W (x)

′
γ0

)
≤ ε < 1 for all values of x ∈ supp (Xi )



06. Estimation: Normalized propensity weights

I Step 1: Estimate propensity score parameter γ̂, by ML

I Step 2:

τ̂NPW =
1

n

n∑
i=1

 DiYi∑n
i=1

Di/n
−

G
(
W
′
i
γ̂
)
(1−Di )

(1−G(W ′i γ̂))
Yi∑n

i=1

G(W ′i γ̂)(1−Di )

(1−G(W ′i γ̂))
/n


I Alternatively, use only a subset of covariates WS,i ⊂Wi

τ̂S =
1

n

n∑
i=1

 DiYi

1

n

∑n
i=1

Di

−

G
(
W
′
S,i γ̂S

)
(1−Di )

(1−G(W ′S,i γ̂S))
Yi

1

n

∑n
i=1

G(W ′S,i γ̂S)(1−Di )

(1−G(W ′S,i γ̂S))

 ,
I Leads to collection of estimators

{τ̂S,NPW }S



07. Local misspeci�cation: motivation

I Standard asymptotics: no bias-variance tradeo�

I For the full model estimator,
√
n (τ̂NPW − τ0)→ N

(
0, ω2

NPW

)
I For any subset estimator,

√
n (τ̂S − τS)→ N

(
0, ω2

S

)
, where

τS = plim (τ̂S) 6= τ0

I Then

√
n (τ̂S − τ0) =

√
n (τ̂S − τS) +

√
n (τS − τ0)

→ N
(
0, ω2

S

)
±∞

I Asymptotically, we always prefer the big model.
Counterintuitive.



08. Asymptotic distribution τ̂S

√
n(τ̂S − τ0) → N (0, ω2

S) + biasS ,

ω2

S =
1

Q2
E

[
L2
(

(Di − Gi )
1− 2Gi

1− Gi
(µ0 (Xi )− α0)

∣∣∣∣ hS)]+ ω̃2

biasS =
1

Q
E

[
L⊥
(
Di − Gi

1− Gi
(µ0 (Xi )− α0)

∣∣∣∣ hS) h′Sc] δSc
I ω2

S ↗ as dim(WS,i )↗
I |biasS | tends to ↘ as |δSc | ↘ or dim(WS,i )↗.

I Notation

I Gi = G

(
W

′
i γ0

)
, µ0 (Xi ) = E (Yi (0)|Xi ), α0 = E (Yi (0)|Di = 1)

I hS = (Di−Gi )Gi

Gi (1−Gi )
WS,i and L ( ·| ·) is a projection,

I S
C is an index for the regressors not in S , e.g. WSC ,i =Wi\WS,i



09. Model selection: FIC

I We have a collection {τ̂S} of estimators

I We want to select the estimator with the lowest MSE

I Not feasible: MSE must be estimated

I Focussed information criterion (FIC) approach
(Claeskens/Hjort, JASA, 2003; CUP, 2008):

I Assume that the full model is correctly speci�ed
I Focus is on τ0, γ is a nuisance parameter
I FIC: an unbiased estimate of MSE (τ̂S) for each estimator
I Select estimator with the lowest FIC



10. Model selection: MSE estimation

I Mean squared error for τ̂S can be written

MSES = ω2

S + b
′
SδSc δ

′
ScbS

I Consistent estimators for ω2

S and b
′
S are available from full

model estimation

I Problem: No consistent estimator for δ =
√
n (γn − γ0)

I For example, considerδ̂ =
√
n (γ̂ − γ0)→ N (δ,V )

I δ̂ is unbiased but not consistent

I For MSE, we are interested in δδ
′
. Use: δ̂δ′ = δ̂δ̂

′ − V̂

I Now, all ingredients for FIC model selection are available



Model selection: overview

1. Specify a largest model by choosing Wi

2. Specify which submodels S are considered

3. Obtain the NPW estimator using the full set of covariates

I Also provides ω̂2

S
, b̂S for each submodel S , and δ̂δ′

4. For each estimator, compute

FIC (S) = M̂SES = ω̂2

S + b̂
′
S δ̂Sc δ

′
Sc b̂

′
S

5. Choose the estimator with minimum FIC (S)

6. This is the FIC selection estimator for ATT



11. Model averaging

I Model selection estimators are �discontinuous� in δ̂

I An alternative is to consider model averaging estimators

τ̂avg =
∑
S

cS

(
δ̂
)
τ̂S ,

∑
S

cS

(
δ̂
)

= 1

I Model selection: cS =

{
1 if FIC (S) is minimized at S

0 if not

I Alternative: assign smooth weights, e.g. cS = FIC−1(S)∑
S
FIC−1(S)



12. Optimal averaging

I The distribution of the averaging estimator is given by

√
n(τ̂avg − τn) =

∑
S

cS

(
δ̂
)√

n(τ̂S − τn)

I The MSE converges to

MSE (τ̂avg )→ Eδ̂|δ

[
c(δ̂)′K (δ̂, δ)c(δ̂)

]
,

with c
(
δ̂
)
the vector of weights, δ̂ ∼ N (δ,Σδ), and

K (δ̂, δ) = V + (A1δ + A2δ̂)(A1δ + A2δ̂)′

I MSE-minimizer not feasible: depends on the true value of δ



13. Optimal averaging: Statistical decision

We propose to use weights that solve

c∗
(
δ̂
)

= argmin
c(·)

ˆ
δ
Eδ̂|δ

[
c(δ̂)′K (δ̂, δ)c(δ̂)

]
dµ(δ)

where µ (δ) is a prior on δ

Proposition:

Let µ(δ) be a proper prior, and assume that

Kpost(δ̂) = Eδ|δ̂(K (δ̂, δ)) is nonsingular. Then

c∗(δ̂) =
1

ι′Kpost(δ̂)ι
Kpost(δ̂)ι.



14. Toy model: setup

I Xi is binary covariate, with P (Xi = 1) = 0.5

I If Xi = 0, then Yi = 0

I If Di = 1, then Yi = 1

I P(D = 1|X = 0) = 0.4, P(D = 1|X = 1) = γ1

I E (Yi |D = 0,X = 1) = µY and variance σ2Y

In this model, the expression for the ATE and ATT are
straightforward:

ATE = −pXµY
ATT = −P(X = 1|D = 1)µY

1. Estimator 1: No covariates: τ̂0 = 1

n

∑
i DiYi

2. Estimator 2: Include covariate: τ̂f = −q̂1µ̂Y



15. Toy model: results
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MSE for the estimator with covariate (black), the estimator without
covariate (red), and the averaging estimator (blue). Dotted lines
are asymptotic approximations, solid lines are simulation results.



Simulation model

I Model for simulations:

P(Di = 1|Xi ) = Λ(γ0 + X
′
i γ),

Yi (0) = β00 + X
′
i β0 + u0i ,

Yi (1) = β10 + X
′
i β1 + u1i ,

uji |Xi ∼ N
(
0, σ2j

)
, j ∈ {0, 1} ,

Xi ∼ NK

(
0K , cIK + (1− c)ιK ι

′
K

)
.

I Logit link, normality for regressors and disturbances, linear
outcome equations

I Note: simulation results do not depend on the local
misspeci�cation framework



Benchmark values

Parameter Value Interpretation

n 300 Moderate sample size
K 4 4 regressors
c 0.7 Corr(X1,X2)=0.3

γ1 = β11 1 X1 is the important regressors
γk , k > 1 0.1 Other regressors are less important
β1,k , k > 1 k/10 Heterogeneous treatment e�ects

β0 0 Yi (0) = u0i
γ0, β10 1; 1 -
σ0 = σ1 0.1 -

Reps 9000 9000 Monte Carlo reps

BS reps 1000 1000 bootstrap reps for Ω̂
2K−1 submodels

Table : Parameter values for the benchmark simulations.



Benchmark results

All submodels

Estimator Bias Var MSE

{X1} 6.29 3.63 4.02
{X1,X2} 4.48 3.80 4.00
{X1,X2,X3} 3.33 3.97 4.08
{X1,X2,X3,X4} 2.50 4.11 4.17

.

.

.
.
.
.

.

.

.
.
.
.

{X2,X3,X4} 72.79 1.66 54.64

Best submodel 4.44 3.80 4.00
Selection 4.24 3.72 3.90
Bayes 4.84 2.78 3.01
HC 5.54 3.35 3.66

invFIC 6.88 3.06 3.53

Relative e�ciency 72%

Table : All values were multiplied by 100.



16. Application: National Supported Work Demonstration

I We apply the estimators to Lalonde (AER, 1986) and Dehejia
and Wahba (JASA, 1999)

I E�ect of a labor market training on post-program earnings

I Experimental results (dotted vertical line): $1631 (sd: 637)

I Lalonde: results cannot be replicated with regression
methods and PSID/CPS

I DW: results can be replicated, using propensity score methods

I Our results (triangle): more precise, closer to experimental



17. Application: Results
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Dots represent individual submodel estimates. The dotted line
represents the experimental estimate and its standard error. The
solid line represents our averaging estimate.


